Metamath Proof Explorer


Theorem lhpmcvr3

Description: Specialization of lhpmcvr2 . TODO: Use this to simplify many uses of ( P .\/ ( X ./\ W ) ) = X to become P .<_ X . (Contributed by NM, 6-Apr-2014)

Ref Expression
Hypotheses lhpmcvr2.b 𝐵 = ( Base ‘ 𝐾 )
lhpmcvr2.l = ( le ‘ 𝐾 )
lhpmcvr2.j = ( join ‘ 𝐾 )
lhpmcvr2.m = ( meet ‘ 𝐾 )
lhpmcvr2.a 𝐴 = ( Atoms ‘ 𝐾 )
lhpmcvr2.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion lhpmcvr3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑃 𝑋 ↔ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) )

Proof

Step Hyp Ref Expression
1 lhpmcvr2.b 𝐵 = ( Base ‘ 𝐾 )
2 lhpmcvr2.l = ( le ‘ 𝐾 )
3 lhpmcvr2.j = ( join ‘ 𝐾 )
4 lhpmcvr2.m = ( meet ‘ 𝐾 )
5 lhpmcvr2.a 𝐴 = ( Atoms ‘ 𝐾 )
6 lhpmcvr2.h 𝐻 = ( LHyp ‘ 𝐾 )
7 simpl1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑃 𝑋 ) → 𝐾 ∈ HL )
8 simpl3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑃 𝑋 ) → 𝑃𝐴 )
9 simpl2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑃 𝑋 ) → 𝑋𝐵 )
10 simpl1r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑃 𝑋 ) → 𝑊𝐻 )
11 1 6 lhpbase ( 𝑊𝐻𝑊𝐵 )
12 10 11 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑃 𝑋 ) → 𝑊𝐵 )
13 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑃 𝑋 ) → 𝑃 𝑋 )
14 1 2 3 4 5 atmod3i1 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑊𝐵 ) ∧ 𝑃 𝑋 ) → ( 𝑃 ( 𝑋 𝑊 ) ) = ( 𝑋 ( 𝑃 𝑊 ) ) )
15 7 8 9 12 13 14 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑃 𝑋 ) → ( 𝑃 ( 𝑋 𝑊 ) ) = ( 𝑋 ( 𝑃 𝑊 ) ) )
16 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑃 𝑋 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 simpl3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑃 𝑋 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
18 eqid ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 )
19 2 3 18 5 6 lhpjat2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑃 𝑊 ) = ( 1. ‘ 𝐾 ) )
20 16 17 19 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑃 𝑋 ) → ( 𝑃 𝑊 ) = ( 1. ‘ 𝐾 ) )
21 20 oveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑃 𝑋 ) → ( 𝑋 ( 𝑃 𝑊 ) ) = ( 𝑋 ( 1. ‘ 𝐾 ) ) )
22 hlol ( 𝐾 ∈ HL → 𝐾 ∈ OL )
23 7 22 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑃 𝑋 ) → 𝐾 ∈ OL )
24 1 4 18 olm11 ( ( 𝐾 ∈ OL ∧ 𝑋𝐵 ) → ( 𝑋 ( 1. ‘ 𝐾 ) ) = 𝑋 )
25 23 9 24 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑃 𝑋 ) → ( 𝑋 ( 1. ‘ 𝐾 ) ) = 𝑋 )
26 15 21 25 3eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝑃 𝑋 ) → ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 )
27 simpl1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝐾 ∈ HL )
28 27 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝐾 ∈ Lat )
29 simpl3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑃𝐴 )
30 1 5 atbase ( 𝑃𝐴𝑃𝐵 )
31 29 30 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑃𝐵 )
32 simpl2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑋𝐵 )
33 simpl1r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑊𝐻 )
34 33 11 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑊𝐵 )
35 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
36 28 32 34 35 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
37 1 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ ( 𝑋 𝑊 ) ∈ 𝐵 ) → 𝑃 ( 𝑃 ( 𝑋 𝑊 ) ) )
38 28 31 36 37 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑃 ( 𝑃 ( 𝑋 𝑊 ) ) )
39 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) → ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 )
40 38 39 breqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑃 𝑋 )
41 26 40 impbida ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑃 𝑋 ↔ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) )