Metamath Proof Explorer


Theorem lhpmcvr3

Description: Specialization of lhpmcvr2 . TODO: Use this to simplify many uses of ( P .\/ ( X ./\ W ) ) = X to become P .<_ X . (Contributed by NM, 6-Apr-2014)

Ref Expression
Hypotheses lhpmcvr2.b B = Base K
lhpmcvr2.l ˙ = K
lhpmcvr2.j ˙ = join K
lhpmcvr2.m ˙ = meet K
lhpmcvr2.a A = Atoms K
lhpmcvr2.h H = LHyp K
Assertion lhpmcvr3 K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X P ˙ X ˙ W = X

Proof

Step Hyp Ref Expression
1 lhpmcvr2.b B = Base K
2 lhpmcvr2.l ˙ = K
3 lhpmcvr2.j ˙ = join K
4 lhpmcvr2.m ˙ = meet K
5 lhpmcvr2.a A = Atoms K
6 lhpmcvr2.h H = LHyp K
7 simpl1l K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X K HL
8 simpl3l K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X P A
9 simpl2l K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X X B
10 simpl1r K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X W H
11 1 6 lhpbase W H W B
12 10 11 syl K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X W B
13 simpr K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X P ˙ X
14 1 2 3 4 5 atmod3i1 K HL P A X B W B P ˙ X P ˙ X ˙ W = X ˙ P ˙ W
15 7 8 9 12 13 14 syl131anc K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X P ˙ X ˙ W = X ˙ P ˙ W
16 simpl1 K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X K HL W H
17 simpl3 K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X P A ¬ P ˙ W
18 eqid 1. K = 1. K
19 2 3 18 5 6 lhpjat2 K HL W H P A ¬ P ˙ W P ˙ W = 1. K
20 16 17 19 syl2anc K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X P ˙ W = 1. K
21 20 oveq2d K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X X ˙ P ˙ W = X ˙ 1. K
22 hlol K HL K OL
23 7 22 syl K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X K OL
24 1 4 18 olm11 K OL X B X ˙ 1. K = X
25 23 9 24 syl2anc K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X X ˙ 1. K = X
26 15 21 25 3eqtrd K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X P ˙ X ˙ W = X
27 simpl1l K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X ˙ W = X K HL
28 27 hllatd K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X ˙ W = X K Lat
29 simpl3l K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X ˙ W = X P A
30 1 5 atbase P A P B
31 29 30 syl K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X ˙ W = X P B
32 simpl2l K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X ˙ W = X X B
33 simpl1r K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X ˙ W = X W H
34 33 11 syl K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X ˙ W = X W B
35 1 4 latmcl K Lat X B W B X ˙ W B
36 28 32 34 35 syl3anc K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X ˙ W = X X ˙ W B
37 1 2 3 latlej1 K Lat P B X ˙ W B P ˙ P ˙ X ˙ W
38 28 31 36 37 syl3anc K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X ˙ W = X P ˙ P ˙ X ˙ W
39 simpr K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X ˙ W = X P ˙ X ˙ W = X
40 38 39 breqtrd K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X ˙ W = X P ˙ X
41 26 40 impbida K HL W H X B ¬ X ˙ W P A ¬ P ˙ W P ˙ X P ˙ X ˙ W = X