Metamath Proof Explorer


Theorem lhpmcvr4N

Description: Specialization of lhpmcvr2 . (Contributed by NM, 6-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lhpmcvr2.b B=BaseK
lhpmcvr2.l ˙=K
lhpmcvr2.j ˙=joinK
lhpmcvr2.m ˙=meetK
lhpmcvr2.a A=AtomsK
lhpmcvr2.h H=LHypK
Assertion lhpmcvr4N KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙X¬P˙Y

Proof

Step Hyp Ref Expression
1 lhpmcvr2.b B=BaseK
2 lhpmcvr2.l ˙=K
3 lhpmcvr2.j ˙=joinK
4 lhpmcvr2.m ˙=meetK
5 lhpmcvr2.a A=AtomsK
6 lhpmcvr2.h H=LHypK
7 simp2rr KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙X¬P˙W
8 simp33 KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙XP˙X
9 simp1l KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙XKHL
10 9 hllatd KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙XKLat
11 simp2rl KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙XPA
12 1 5 atbase PAPB
13 11 12 syl KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙XPB
14 simp2ll KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙XXB
15 simp31 KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙XYB
16 1 2 4 latlem12 KLatPBXBYBP˙XP˙YP˙X˙Y
17 10 13 14 15 16 syl13anc KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙XP˙XP˙YP˙X˙Y
18 17 biimpd KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙XP˙XP˙YP˙X˙Y
19 8 18 mpand KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙XP˙YP˙X˙Y
20 simp32 KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙XX˙Y˙W
21 1 4 latmcl KLatXBYBX˙YB
22 10 14 15 21 syl3anc KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙XX˙YB
23 simp1r KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙XWH
24 1 6 lhpbase WHWB
25 23 24 syl KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙XWB
26 1 2 lattr KLatPBX˙YBWBP˙X˙YX˙Y˙WP˙W
27 10 13 22 25 26 syl13anc KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙XP˙X˙YX˙Y˙WP˙W
28 20 27 mpan2d KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙XP˙X˙YP˙W
29 19 28 syld KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙XP˙YP˙W
30 7 29 mtod KHLWHXB¬X˙WPA¬P˙WYBX˙Y˙WP˙X¬P˙Y