Metamath Proof Explorer


Theorem lhpmcvr5N

Description: Specialization of lhpmcvr2 . (Contributed by NM, 6-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lhpmcvr2.b B=BaseK
lhpmcvr2.l ˙=K
lhpmcvr2.j ˙=joinK
lhpmcvr2.m ˙=meetK
lhpmcvr2.a A=AtomsK
lhpmcvr2.h H=LHypK
Assertion lhpmcvr5N KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=X

Proof

Step Hyp Ref Expression
1 lhpmcvr2.b B=BaseK
2 lhpmcvr2.l ˙=K
3 lhpmcvr2.j ˙=joinK
4 lhpmcvr2.m ˙=meetK
5 lhpmcvr2.a A=AtomsK
6 lhpmcvr2.h H=LHypK
7 1 2 3 4 5 6 lhpmcvr2 KHLWHXB¬X˙WpA¬p˙Wp˙X˙W=X
8 7 3adant3 KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=X
9 simp3l KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=X¬p˙W
10 simp11 KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=XKHLWH
11 simp12 KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=XXB¬X˙W
12 simp2 KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=XpA
13 12 9 jca KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=XpA¬p˙W
14 simp13l KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=XYB
15 simp13r KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=XX˙Y˙W
16 simp11l KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=XKHL
17 16 hllatd KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=XKLat
18 1 5 atbase pApB
19 18 3ad2ant2 KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=XpB
20 simp12l KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=XXB
21 simp11r KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=XWH
22 1 6 lhpbase WHWB
23 21 22 syl KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=XWB
24 1 4 latmcl KLatXBWBX˙WB
25 17 20 23 24 syl3anc KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=XX˙WB
26 1 2 3 latlej1 KLatpBX˙WBp˙p˙X˙W
27 17 19 25 26 syl3anc KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=Xp˙p˙X˙W
28 simp3r KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=Xp˙X˙W=X
29 27 28 breqtrd KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=Xp˙X
30 1 2 3 4 5 6 lhpmcvr4N KHLWHXB¬X˙WpA¬p˙WYBX˙Y˙Wp˙X¬p˙Y
31 10 11 13 14 15 29 30 syl123anc KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=X¬p˙Y
32 9 31 28 3jca KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=X¬p˙W¬p˙Yp˙X˙W=X
33 32 3expia KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=X¬p˙W¬p˙Yp˙X˙W=X
34 33 reximdva KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙Wp˙X˙W=XpA¬p˙W¬p˙Yp˙X˙W=X
35 8 34 mpd KHLWHXB¬X˙WYBX˙Y˙WpA¬p˙W¬p˙Yp˙X˙W=X