| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhpmcvr2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
lhpmcvr2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
lhpmcvr2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
lhpmcvr2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 5 |
|
lhpmcvr2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 6 |
|
lhpmcvr2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 7 |
1 2 3 4 5 6
|
lhpmcvr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
| 8 |
7
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
| 9 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ¬ 𝑝 ≤ 𝑊 ) |
| 10 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 11 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) |
| 12 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑝 ∈ 𝐴 ) |
| 13 |
12 9
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) |
| 14 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑌 ∈ 𝐵 ) |
| 15 |
|
simp13r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) |
| 16 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝐾 ∈ HL ) |
| 17 |
16
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝐾 ∈ Lat ) |
| 18 |
1 5
|
atbase |
⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵 ) |
| 19 |
18
|
3ad2ant2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑝 ∈ 𝐵 ) |
| 20 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
| 21 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑊 ∈ 𝐻 ) |
| 22 |
1 6
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
| 23 |
21 22
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑊 ∈ 𝐵 ) |
| 24 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
| 25 |
17 20 23 24
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
| 26 |
1 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑝 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) → 𝑝 ≤ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
| 27 |
17 19 25 26
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑝 ≤ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
| 28 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
| 29 |
27 28
|
breqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑝 ≤ 𝑋 ) |
| 30 |
1 2 3 4 5 6
|
lhpmcvr4N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ∧ 𝑝 ≤ 𝑋 ) ) → ¬ 𝑝 ≤ 𝑌 ) |
| 31 |
10 11 13 14 15 29 30
|
syl123anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ¬ 𝑝 ≤ 𝑌 ) |
| 32 |
9 31 28
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ∧ ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
| 33 |
32
|
3expia |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ∧ 𝑝 ∈ 𝐴 ) → ( ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) |
| 34 |
33
|
reximdva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ( ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) |
| 35 |
8 34
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑝 ≤ 𝑌 ∧ ( 𝑝 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |