Metamath Proof Explorer


Theorem lhpmcvr2

Description: Alternate way to express that the meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 9-Apr-2013)

Ref Expression
Hypotheses lhpmcvr2.b B = Base K
lhpmcvr2.l ˙ = K
lhpmcvr2.j ˙ = join K
lhpmcvr2.m ˙ = meet K
lhpmcvr2.a A = Atoms K
lhpmcvr2.h H = LHyp K
Assertion lhpmcvr2 K HL W H X B ¬ X ˙ W p A ¬ p ˙ W p ˙ X ˙ W = X

Proof

Step Hyp Ref Expression
1 lhpmcvr2.b B = Base K
2 lhpmcvr2.l ˙ = K
3 lhpmcvr2.j ˙ = join K
4 lhpmcvr2.m ˙ = meet K
5 lhpmcvr2.a A = Atoms K
6 lhpmcvr2.h H = LHyp K
7 eqid K = K
8 1 2 4 7 6 lhpmcvr K HL W H X B ¬ X ˙ W X ˙ W K X
9 simpll K HL W H X B ¬ X ˙ W K HL
10 simprl K HL W H X B ¬ X ˙ W X B
11 1 6 lhpbase W H W B
12 11 ad2antlr K HL W H X B ¬ X ˙ W W B
13 1 2 3 4 7 5 cvrval5 K HL X B W B X ˙ W K X p A ¬ p ˙ W p ˙ X ˙ W = X
14 9 10 12 13 syl3anc K HL W H X B ¬ X ˙ W X ˙ W K X p A ¬ p ˙ W p ˙ X ˙ W = X
15 8 14 mpbid K HL W H X B ¬ X ˙ W p A ¬ p ˙ W p ˙ X ˙ W = X