Metamath Proof Explorer


Theorem lhpmcvr2

Description: Alternate way to express that the meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 9-Apr-2013)

Ref Expression
Hypotheses lhpmcvr2.b
|- B = ( Base ` K )
lhpmcvr2.l
|- .<_ = ( le ` K )
lhpmcvr2.j
|- .\/ = ( join ` K )
lhpmcvr2.m
|- ./\ = ( meet ` K )
lhpmcvr2.a
|- A = ( Atoms ` K )
lhpmcvr2.h
|- H = ( LHyp ` K )
Assertion lhpmcvr2
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. p e. A ( -. p .<_ W /\ ( p .\/ ( X ./\ W ) ) = X ) )

Proof

Step Hyp Ref Expression
1 lhpmcvr2.b
 |-  B = ( Base ` K )
2 lhpmcvr2.l
 |-  .<_ = ( le ` K )
3 lhpmcvr2.j
 |-  .\/ = ( join ` K )
4 lhpmcvr2.m
 |-  ./\ = ( meet ` K )
5 lhpmcvr2.a
 |-  A = ( Atoms ` K )
6 lhpmcvr2.h
 |-  H = ( LHyp ` K )
7 eqid
 |-  ( 
8 1 2 4 7 6 lhpmcvr
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( X ./\ W ) ( 
9 simpll
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> K e. HL )
10 simprl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> X e. B )
11 1 6 lhpbase
 |-  ( W e. H -> W e. B )
12 11 ad2antlr
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> W e. B )
13 1 2 3 4 7 5 cvrval5
 |-  ( ( K e. HL /\ X e. B /\ W e. B ) -> ( ( X ./\ W ) (  E. p e. A ( -. p .<_ W /\ ( p .\/ ( X ./\ W ) ) = X ) ) )
14 9 10 12 13 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( ( X ./\ W ) (  E. p e. A ( -. p .<_ W /\ ( p .\/ ( X ./\ W ) ) = X ) ) )
15 8 14 mpbid
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. p e. A ( -. p .<_ W /\ ( p .\/ ( X ./\ W ) ) = X ) )