Step |
Hyp |
Ref |
Expression |
1 |
|
lhpmcvr2.b |
|- B = ( Base ` K ) |
2 |
|
lhpmcvr2.l |
|- .<_ = ( le ` K ) |
3 |
|
lhpmcvr2.j |
|- .\/ = ( join ` K ) |
4 |
|
lhpmcvr2.m |
|- ./\ = ( meet ` K ) |
5 |
|
lhpmcvr2.a |
|- A = ( Atoms ` K ) |
6 |
|
lhpmcvr2.h |
|- H = ( LHyp ` K ) |
7 |
|
eqid |
|- ( |
8 |
1 2 4 7 6
|
lhpmcvr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( X ./\ W ) ( |
9 |
|
simpll |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> K e. HL ) |
10 |
|
simprl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> X e. B ) |
11 |
1 6
|
lhpbase |
|- ( W e. H -> W e. B ) |
12 |
11
|
ad2antlr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> W e. B ) |
13 |
1 2 3 4 7 5
|
cvrval5 |
|- ( ( K e. HL /\ X e. B /\ W e. B ) -> ( ( X ./\ W ) ( E. p e. A ( -. p .<_ W /\ ( p .\/ ( X ./\ W ) ) = X ) ) ) |
14 |
9 10 12 13
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( ( X ./\ W ) ( E. p e. A ( -. p .<_ W /\ ( p .\/ ( X ./\ W ) ) = X ) ) ) |
15 |
8 14
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. p e. A ( -. p .<_ W /\ ( p .\/ ( X ./\ W ) ) = X ) ) |