| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhpmcvr.b |
|- B = ( Base ` K ) |
| 2 |
|
lhpmcvr.l |
|- .<_ = ( le ` K ) |
| 3 |
|
lhpmcvr.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
lhpmcvr.c |
|- C = ( |
| 5 |
|
lhpmcvr.h |
|- H = ( LHyp ` K ) |
| 6 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 7 |
6
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> K e. Lat ) |
| 8 |
|
simprl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> X e. B ) |
| 9 |
1 5
|
lhpbase |
|- ( W e. H -> W e. B ) |
| 10 |
9
|
ad2antlr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> W e. B ) |
| 11 |
1 3
|
latmcom |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) = ( W ./\ X ) ) |
| 12 |
7 8 10 11
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( X ./\ W ) = ( W ./\ X ) ) |
| 13 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
| 14 |
13 4 5
|
lhp1cvr |
|- ( ( K e. HL /\ W e. H ) -> W C ( 1. ` K ) ) |
| 15 |
14
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> W C ( 1. ` K ) ) |
| 16 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 17 |
1 2 16 13 5
|
lhpj1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( W ( join ` K ) X ) = ( 1. ` K ) ) |
| 18 |
15 17
|
breqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> W C ( W ( join ` K ) X ) ) |
| 19 |
|
simpll |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> K e. HL ) |
| 20 |
1 16 3 4
|
cvrexch |
|- ( ( K e. HL /\ W e. B /\ X e. B ) -> ( ( W ./\ X ) C X <-> W C ( W ( join ` K ) X ) ) ) |
| 21 |
19 10 8 20
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( ( W ./\ X ) C X <-> W C ( W ( join ` K ) X ) ) ) |
| 22 |
18 21
|
mpbird |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( W ./\ X ) C X ) |
| 23 |
12 22
|
eqbrtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( X ./\ W ) C X ) |