| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhpmcvr.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
lhpmcvr.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
lhpmcvr.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
lhpmcvr.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
| 5 |
|
lhpmcvr.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 7 |
6
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
| 8 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
| 9 |
1 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
| 10 |
9
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐵 ) |
| 11 |
1 3
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) = ( 𝑊 ∧ 𝑋 ) ) |
| 12 |
7 8 10 11
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑊 ) = ( 𝑊 ∧ 𝑋 ) ) |
| 13 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
| 14 |
13 4 5
|
lhp1cvr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑊 𝐶 ( 1. ‘ 𝐾 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → 𝑊 𝐶 ( 1. ‘ 𝐾 ) ) |
| 16 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
| 17 |
1 2 16 13 5
|
lhpj1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝑊 ( join ‘ 𝐾 ) 𝑋 ) = ( 1. ‘ 𝐾 ) ) |
| 18 |
15 17
|
breqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → 𝑊 𝐶 ( 𝑊 ( join ‘ 𝐾 ) 𝑋 ) ) |
| 19 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
| 20 |
1 16 3 4
|
cvrexch |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑊 ∧ 𝑋 ) 𝐶 𝑋 ↔ 𝑊 𝐶 ( 𝑊 ( join ‘ 𝐾 ) 𝑋 ) ) ) |
| 21 |
19 10 8 20
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( ( 𝑊 ∧ 𝑋 ) 𝐶 𝑋 ↔ 𝑊 𝐶 ( 𝑊 ( join ‘ 𝐾 ) 𝑋 ) ) ) |
| 22 |
18 21
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝑊 ∧ 𝑋 ) 𝐶 𝑋 ) |
| 23 |
12 22
|
eqbrtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑊 ) 𝐶 𝑋 ) |