Step |
Hyp |
Ref |
Expression |
1 |
|
dihval.b |
|- B = ( Base ` K ) |
2 |
|
dihval.l |
|- .<_ = ( le ` K ) |
3 |
|
dihval.j |
|- .\/ = ( join ` K ) |
4 |
|
dihval.m |
|- ./\ = ( meet ` K ) |
5 |
|
dihval.a |
|- A = ( Atoms ` K ) |
6 |
|
dihval.h |
|- H = ( LHyp ` K ) |
7 |
|
dihval.i |
|- I = ( ( DIsoH ` K ) ` W ) |
8 |
|
dihval.d |
|- D = ( ( DIsoB ` K ) ` W ) |
9 |
|
dihval.c |
|- C = ( ( DIsoC ` K ) ` W ) |
10 |
|
dihval.u |
|- U = ( ( DVecH ` K ) ` W ) |
11 |
|
dihval.s |
|- S = ( LSubSp ` U ) |
12 |
|
dihval.p |
|- .(+) = ( LSSum ` U ) |
13 |
11
|
fvexi |
|- S e. _V |
14 |
|
nfv |
|- F/ q ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) |
15 |
|
nfvd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> F/ q ( I ` X ) = ( ( C ` Q ) .(+) ( D ` ( X ./\ W ) ) ) ) |
16 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dihvalc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( I ` X ) = ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) ) |
17 |
16
|
3adant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( I ` X ) = ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) ) |
18 |
|
eqeq1 |
|- ( ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( I ` X ) -> ( ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` Q ) .(+) ( D ` ( X ./\ W ) ) ) <-> ( I ` X ) = ( ( C ` Q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) |
19 |
18
|
adantl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( I ` X ) ) -> ( ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` Q ) .(+) ( D ` ( X ./\ W ) ) ) <-> ( I ` X ) = ( ( C ` Q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) |
20 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( q e. A /\ ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) ) ) -> ( K e. HL /\ W e. H ) ) |
21 |
|
simprl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( q e. A /\ ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) ) ) -> q e. A ) |
22 |
|
simprrl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( q e. A /\ ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) ) ) -> -. q .<_ W ) |
23 |
21 22
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( q e. A /\ ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) ) ) -> ( q e. A /\ -. q .<_ W ) ) |
24 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( q e. A /\ ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
25 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( q e. A /\ ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) ) ) -> X e. B ) |
26 |
|
simprrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( q e. A /\ ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) ) ) -> ( q .\/ ( X ./\ W ) ) = X ) |
27 |
|
simpl3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( q e. A /\ ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) ) ) -> ( Q .\/ ( X ./\ W ) ) = X ) |
28 |
26 27
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( q e. A /\ ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) ) ) -> ( q .\/ ( X ./\ W ) ) = ( Q .\/ ( X ./\ W ) ) ) |
29 |
1 2 3 4 5 6 8 9 10 12
|
dihjust |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ X e. B ) /\ ( q .\/ ( X ./\ W ) ) = ( Q .\/ ( X ./\ W ) ) ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` Q ) .(+) ( D ` ( X ./\ W ) ) ) ) |
30 |
20 23 24 25 28 29
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( q e. A /\ ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) ) ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` Q ) .(+) ( D ` ( X ./\ W ) ) ) ) |
31 |
30
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( ( q e. A /\ ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` Q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) |
32 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dihlsscpre |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( I ` X ) e. S ) |
33 |
32
|
3adant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( I ` X ) e. S ) |
34 |
1 2 3 4 5 6
|
lhpmcvr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. q e. A ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) ) |
35 |
34
|
3adant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> E. q e. A ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) ) |
36 |
14 15 17 19 31 33 35
|
riotasv3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ S e. _V ) -> ( I ` X ) = ( ( C ` Q ) .(+) ( D ` ( X ./\ W ) ) ) ) |
37 |
13 36
|
mpan2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( I ` X ) = ( ( C ` Q ) .(+) ( D ` ( X ./\ W ) ) ) ) |