Metamath Proof Explorer


Theorem dihlsscpre

Description: Closure of isomorphism H for a lattice K when -. X .<_ W . (Contributed by NM, 6-Mar-2014)

Ref Expression
Hypotheses dihval.b
|- B = ( Base ` K )
dihval.l
|- .<_ = ( le ` K )
dihval.j
|- .\/ = ( join ` K )
dihval.m
|- ./\ = ( meet ` K )
dihval.a
|- A = ( Atoms ` K )
dihval.h
|- H = ( LHyp ` K )
dihval.i
|- I = ( ( DIsoH ` K ) ` W )
dihval.d
|- D = ( ( DIsoB ` K ) ` W )
dihval.c
|- C = ( ( DIsoC ` K ) ` W )
dihval.u
|- U = ( ( DVecH ` K ) ` W )
dihval.s
|- S = ( LSubSp ` U )
dihval.p
|- .(+) = ( LSSum ` U )
Assertion dihlsscpre
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( I ` X ) e. S )

Proof

Step Hyp Ref Expression
1 dihval.b
 |-  B = ( Base ` K )
2 dihval.l
 |-  .<_ = ( le ` K )
3 dihval.j
 |-  .\/ = ( join ` K )
4 dihval.m
 |-  ./\ = ( meet ` K )
5 dihval.a
 |-  A = ( Atoms ` K )
6 dihval.h
 |-  H = ( LHyp ` K )
7 dihval.i
 |-  I = ( ( DIsoH ` K ) ` W )
8 dihval.d
 |-  D = ( ( DIsoB ` K ) ` W )
9 dihval.c
 |-  C = ( ( DIsoC ` K ) ` W )
10 dihval.u
 |-  U = ( ( DVecH ` K ) ` W )
11 dihval.s
 |-  S = ( LSubSp ` U )
12 dihval.p
 |-  .(+) = ( LSSum ` U )
13 1 2 3 4 5 6 7 8 9 10 11 12 dihvalc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( I ` X ) = ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) )
14 simp1l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> ( K e. HL /\ W e. H ) )
15 simp2l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> q e. A )
16 simp3ll
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> -. q .<_ W )
17 15 16 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> ( q e. A /\ -. q .<_ W ) )
18 simp2r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> r e. A )
19 simp3rl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> -. r .<_ W )
20 18 19 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> ( r e. A /\ -. r .<_ W ) )
21 simp1rl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> X e. B )
22 simp3lr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> ( q .\/ ( X ./\ W ) ) = X )
23 simp3rr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> ( r .\/ ( X ./\ W ) ) = X )
24 22 23 eqtr4d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> ( q .\/ ( X ./\ W ) ) = ( r .\/ ( X ./\ W ) ) )
25 1 2 3 4 5 6 8 9 10 12 dihjust
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( r e. A /\ -. r .<_ W ) /\ X e. B ) /\ ( q .\/ ( X ./\ W ) ) = ( r .\/ ( X ./\ W ) ) ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` r ) .(+) ( D ` ( X ./\ W ) ) ) )
26 14 17 20 21 24 25 syl131anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` r ) .(+) ( D ` ( X ./\ W ) ) ) )
27 26 3exp
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( ( q e. A /\ r e. A ) -> ( ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` r ) .(+) ( D ` ( X ./\ W ) ) ) ) ) )
28 27 ralrimivv
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> A. q e. A A. r e. A ( ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` r ) .(+) ( D ` ( X ./\ W ) ) ) ) )
29 1 2 3 4 5 6 lhpmcvr2
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. q e. A ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) )
30 simpll
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( K e. HL /\ W e. H ) )
31 6 10 30 dvhlmod
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> U e. LMod )
32 2 5 6 10 9 11 diclss
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( C ` q ) e. S )
33 32 adantlr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( C ` q ) e. S )
34 hllat
 |-  ( K e. HL -> K e. Lat )
35 34 ad3antrrr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> K e. Lat )
36 simplrl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> X e. B )
37 1 6 lhpbase
 |-  ( W e. H -> W e. B )
38 37 ad3antlr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> W e. B )
39 1 4 latmcl
 |-  ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) e. B )
40 35 36 38 39 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( X ./\ W ) e. B )
41 1 2 4 latmle2
 |-  ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) .<_ W )
42 35 36 38 41 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( X ./\ W ) .<_ W )
43 1 2 6 10 8 11 diblss
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( X ./\ W ) e. B /\ ( X ./\ W ) .<_ W ) ) -> ( D ` ( X ./\ W ) ) e. S )
44 30 40 42 43 syl12anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( D ` ( X ./\ W ) ) e. S )
45 11 12 lsmcl
 |-  ( ( U e. LMod /\ ( C ` q ) e. S /\ ( D ` ( X ./\ W ) ) e. S ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S )
46 31 33 44 45 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S )
47 46 a1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( ( q .\/ ( X ./\ W ) ) = X -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S ) )
48 47 expr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ q e. A ) -> ( -. q .<_ W -> ( ( q .\/ ( X ./\ W ) ) = X -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S ) ) )
49 48 impd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ q e. A ) -> ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S ) )
50 49 ancld
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ q e. A ) -> ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S ) ) )
51 50 reximdva
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( E. q e. A ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> E. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S ) ) )
52 29 51 mpd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S ) )
53 breq1
 |-  ( q = r -> ( q .<_ W <-> r .<_ W ) )
54 53 notbid
 |-  ( q = r -> ( -. q .<_ W <-> -. r .<_ W ) )
55 oveq1
 |-  ( q = r -> ( q .\/ ( X ./\ W ) ) = ( r .\/ ( X ./\ W ) ) )
56 55 eqeq1d
 |-  ( q = r -> ( ( q .\/ ( X ./\ W ) ) = X <-> ( r .\/ ( X ./\ W ) ) = X ) )
57 54 56 anbi12d
 |-  ( q = r -> ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) <-> ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) )
58 fveq2
 |-  ( q = r -> ( C ` q ) = ( C ` r ) )
59 58 oveq1d
 |-  ( q = r -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` r ) .(+) ( D ` ( X ./\ W ) ) ) )
60 57 59 reusv3
 |-  ( E. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S ) -> ( A. q e. A A. r e. A ( ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` r ) .(+) ( D ` ( X ./\ W ) ) ) ) <-> E. u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) )
61 52 60 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( A. q e. A A. r e. A ( ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` r ) .(+) ( D ` ( X ./\ W ) ) ) ) <-> E. u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) )
62 28 61 mpbid
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) )
63 reusv1
 |-  ( E. q e. A ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> ( E! u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) <-> E. u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) )
64 29 63 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( E! u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) <-> E. u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) )
65 62 64 mpbird
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E! u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) )
66 riotacl
 |-  ( E! u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) -> ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) e. S )
67 65 66 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) e. S )
68 13 67 eqeltrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( I ` X ) e. S )