| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihval.b |
|- B = ( Base ` K ) |
| 2 |
|
dihval.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dihval.j |
|- .\/ = ( join ` K ) |
| 4 |
|
dihval.m |
|- ./\ = ( meet ` K ) |
| 5 |
|
dihval.a |
|- A = ( Atoms ` K ) |
| 6 |
|
dihval.h |
|- H = ( LHyp ` K ) |
| 7 |
|
dihval.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 8 |
|
dihval.d |
|- D = ( ( DIsoB ` K ) ` W ) |
| 9 |
|
dihval.c |
|- C = ( ( DIsoC ` K ) ` W ) |
| 10 |
|
dihval.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 11 |
|
dihval.s |
|- S = ( LSubSp ` U ) |
| 12 |
|
dihval.p |
|- .(+) = ( LSSum ` U ) |
| 13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dihvalc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( I ` X ) = ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) ) |
| 14 |
|
simp1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 15 |
|
simp2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> q e. A ) |
| 16 |
|
simp3ll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> -. q .<_ W ) |
| 17 |
15 16
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> ( q e. A /\ -. q .<_ W ) ) |
| 18 |
|
simp2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> r e. A ) |
| 19 |
|
simp3rl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> -. r .<_ W ) |
| 20 |
18 19
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> ( r e. A /\ -. r .<_ W ) ) |
| 21 |
|
simp1rl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> X e. B ) |
| 22 |
|
simp3lr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> ( q .\/ ( X ./\ W ) ) = X ) |
| 23 |
|
simp3rr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> ( r .\/ ( X ./\ W ) ) = X ) |
| 24 |
22 23
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> ( q .\/ ( X ./\ W ) ) = ( r .\/ ( X ./\ W ) ) ) |
| 25 |
1 2 3 4 5 6 8 9 10 12
|
dihjust |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( q e. A /\ -. q .<_ W ) /\ ( r e. A /\ -. r .<_ W ) /\ X e. B ) /\ ( q .\/ ( X ./\ W ) ) = ( r .\/ ( X ./\ W ) ) ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` r ) .(+) ( D ` ( X ./\ W ) ) ) ) |
| 26 |
14 17 20 21 24 25
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ r e. A ) /\ ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` r ) .(+) ( D ` ( X ./\ W ) ) ) ) |
| 27 |
26
|
3exp |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( ( q e. A /\ r e. A ) -> ( ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` r ) .(+) ( D ` ( X ./\ W ) ) ) ) ) ) |
| 28 |
27
|
ralrimivv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> A. q e. A A. r e. A ( ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` r ) .(+) ( D ` ( X ./\ W ) ) ) ) ) |
| 29 |
1 2 3 4 5 6
|
lhpmcvr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. q e. A ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) ) |
| 30 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
| 31 |
6 10 30
|
dvhlmod |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> U e. LMod ) |
| 32 |
2 5 6 10 9 11
|
diclss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( C ` q ) e. S ) |
| 33 |
32
|
adantlr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( C ` q ) e. S ) |
| 34 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 35 |
34
|
ad3antrrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> K e. Lat ) |
| 36 |
|
simplrl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> X e. B ) |
| 37 |
1 6
|
lhpbase |
|- ( W e. H -> W e. B ) |
| 38 |
37
|
ad3antlr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> W e. B ) |
| 39 |
1 4
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) e. B ) |
| 40 |
35 36 38 39
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( X ./\ W ) e. B ) |
| 41 |
1 2 4
|
latmle2 |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) .<_ W ) |
| 42 |
35 36 38 41
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( X ./\ W ) .<_ W ) |
| 43 |
1 2 6 10 8 11
|
diblss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( X ./\ W ) e. B /\ ( X ./\ W ) .<_ W ) ) -> ( D ` ( X ./\ W ) ) e. S ) |
| 44 |
30 40 42 43
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( D ` ( X ./\ W ) ) e. S ) |
| 45 |
11 12
|
lsmcl |
|- ( ( U e. LMod /\ ( C ` q ) e. S /\ ( D ` ( X ./\ W ) ) e. S ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S ) |
| 46 |
31 33 44 45
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S ) |
| 47 |
46
|
a1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( q e. A /\ -. q .<_ W ) ) -> ( ( q .\/ ( X ./\ W ) ) = X -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S ) ) |
| 48 |
47
|
expr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ q e. A ) -> ( -. q .<_ W -> ( ( q .\/ ( X ./\ W ) ) = X -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S ) ) ) |
| 49 |
48
|
impd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ q e. A ) -> ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S ) ) |
| 50 |
49
|
ancld |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) /\ q e. A ) -> ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S ) ) ) |
| 51 |
50
|
reximdva |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( E. q e. A ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> E. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S ) ) ) |
| 52 |
29 51
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S ) ) |
| 53 |
|
breq1 |
|- ( q = r -> ( q .<_ W <-> r .<_ W ) ) |
| 54 |
53
|
notbid |
|- ( q = r -> ( -. q .<_ W <-> -. r .<_ W ) ) |
| 55 |
|
oveq1 |
|- ( q = r -> ( q .\/ ( X ./\ W ) ) = ( r .\/ ( X ./\ W ) ) ) |
| 56 |
55
|
eqeq1d |
|- ( q = r -> ( ( q .\/ ( X ./\ W ) ) = X <-> ( r .\/ ( X ./\ W ) ) = X ) ) |
| 57 |
54 56
|
anbi12d |
|- ( q = r -> ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) <-> ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) ) |
| 58 |
|
fveq2 |
|- ( q = r -> ( C ` q ) = ( C ` r ) ) |
| 59 |
58
|
oveq1d |
|- ( q = r -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` r ) .(+) ( D ` ( X ./\ W ) ) ) ) |
| 60 |
57 59
|
reusv3 |
|- ( E. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) e. S ) -> ( A. q e. A A. r e. A ( ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` r ) .(+) ( D ` ( X ./\ W ) ) ) ) <-> E. u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) ) |
| 61 |
52 60
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( A. q e. A A. r e. A ( ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) /\ ( -. r .<_ W /\ ( r .\/ ( X ./\ W ) ) = X ) ) -> ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) = ( ( C ` r ) .(+) ( D ` ( X ./\ W ) ) ) ) <-> E. u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) ) |
| 62 |
28 61
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) |
| 63 |
|
reusv1 |
|- ( E. q e. A ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> ( E! u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) <-> E. u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) ) |
| 64 |
29 63
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( E! u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) <-> E. u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) ) |
| 65 |
62 64
|
mpbird |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E! u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) |
| 66 |
|
riotacl |
|- ( E! u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) -> ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) e. S ) |
| 67 |
65 66
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) e. S ) |
| 68 |
13 67
|
eqeltrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( I ` X ) e. S ) |