Metamath Proof Explorer


Theorem dihlsscpre

Description: Closure of isomorphism H for a lattice K when -. X .<_ W . (Contributed by NM, 6-Mar-2014)

Ref Expression
Hypotheses dihval.b B = Base K
dihval.l ˙ = K
dihval.j ˙ = join K
dihval.m ˙ = meet K
dihval.a A = Atoms K
dihval.h H = LHyp K
dihval.i I = DIsoH K W
dihval.d D = DIsoB K W
dihval.c C = DIsoC K W
dihval.u U = DVecH K W
dihval.s S = LSubSp U
dihval.p ˙ = LSSum U
Assertion dihlsscpre K HL W H X B ¬ X ˙ W I X S

Proof

Step Hyp Ref Expression
1 dihval.b B = Base K
2 dihval.l ˙ = K
3 dihval.j ˙ = join K
4 dihval.m ˙ = meet K
5 dihval.a A = Atoms K
6 dihval.h H = LHyp K
7 dihval.i I = DIsoH K W
8 dihval.d D = DIsoB K W
9 dihval.c C = DIsoC K W
10 dihval.u U = DVecH K W
11 dihval.s S = LSubSp U
12 dihval.p ˙ = LSSum U
13 1 2 3 4 5 6 7 8 9 10 11 12 dihvalc K HL W H X B ¬ X ˙ W I X = ι u S | q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W
14 simp1l K HL W H X B ¬ X ˙ W q A r A ¬ q ˙ W q ˙ X ˙ W = X ¬ r ˙ W r ˙ X ˙ W = X K HL W H
15 simp2l K HL W H X B ¬ X ˙ W q A r A ¬ q ˙ W q ˙ X ˙ W = X ¬ r ˙ W r ˙ X ˙ W = X q A
16 simp3ll K HL W H X B ¬ X ˙ W q A r A ¬ q ˙ W q ˙ X ˙ W = X ¬ r ˙ W r ˙ X ˙ W = X ¬ q ˙ W
17 15 16 jca K HL W H X B ¬ X ˙ W q A r A ¬ q ˙ W q ˙ X ˙ W = X ¬ r ˙ W r ˙ X ˙ W = X q A ¬ q ˙ W
18 simp2r K HL W H X B ¬ X ˙ W q A r A ¬ q ˙ W q ˙ X ˙ W = X ¬ r ˙ W r ˙ X ˙ W = X r A
19 simp3rl K HL W H X B ¬ X ˙ W q A r A ¬ q ˙ W q ˙ X ˙ W = X ¬ r ˙ W r ˙ X ˙ W = X ¬ r ˙ W
20 18 19 jca K HL W H X B ¬ X ˙ W q A r A ¬ q ˙ W q ˙ X ˙ W = X ¬ r ˙ W r ˙ X ˙ W = X r A ¬ r ˙ W
21 simp1rl K HL W H X B ¬ X ˙ W q A r A ¬ q ˙ W q ˙ X ˙ W = X ¬ r ˙ W r ˙ X ˙ W = X X B
22 simp3lr K HL W H X B ¬ X ˙ W q A r A ¬ q ˙ W q ˙ X ˙ W = X ¬ r ˙ W r ˙ X ˙ W = X q ˙ X ˙ W = X
23 simp3rr K HL W H X B ¬ X ˙ W q A r A ¬ q ˙ W q ˙ X ˙ W = X ¬ r ˙ W r ˙ X ˙ W = X r ˙ X ˙ W = X
24 22 23 eqtr4d K HL W H X B ¬ X ˙ W q A r A ¬ q ˙ W q ˙ X ˙ W = X ¬ r ˙ W r ˙ X ˙ W = X q ˙ X ˙ W = r ˙ X ˙ W
25 1 2 3 4 5 6 8 9 10 12 dihjust K HL W H q A ¬ q ˙ W r A ¬ r ˙ W X B q ˙ X ˙ W = r ˙ X ˙ W C q ˙ D X ˙ W = C r ˙ D X ˙ W
26 14 17 20 21 24 25 syl131anc K HL W H X B ¬ X ˙ W q A r A ¬ q ˙ W q ˙ X ˙ W = X ¬ r ˙ W r ˙ X ˙ W = X C q ˙ D X ˙ W = C r ˙ D X ˙ W
27 26 3exp K HL W H X B ¬ X ˙ W q A r A ¬ q ˙ W q ˙ X ˙ W = X ¬ r ˙ W r ˙ X ˙ W = X C q ˙ D X ˙ W = C r ˙ D X ˙ W
28 27 ralrimivv K HL W H X B ¬ X ˙ W q A r A ¬ q ˙ W q ˙ X ˙ W = X ¬ r ˙ W r ˙ X ˙ W = X C q ˙ D X ˙ W = C r ˙ D X ˙ W
29 1 2 3 4 5 6 lhpmcvr2 K HL W H X B ¬ X ˙ W q A ¬ q ˙ W q ˙ X ˙ W = X
30 simpll K HL W H X B ¬ X ˙ W q A ¬ q ˙ W K HL W H
31 6 10 30 dvhlmod K HL W H X B ¬ X ˙ W q A ¬ q ˙ W U LMod
32 2 5 6 10 9 11 diclss K HL W H q A ¬ q ˙ W C q S
33 32 adantlr K HL W H X B ¬ X ˙ W q A ¬ q ˙ W C q S
34 hllat K HL K Lat
35 34 ad3antrrr K HL W H X B ¬ X ˙ W q A ¬ q ˙ W K Lat
36 simplrl K HL W H X B ¬ X ˙ W q A ¬ q ˙ W X B
37 1 6 lhpbase W H W B
38 37 ad3antlr K HL W H X B ¬ X ˙ W q A ¬ q ˙ W W B
39 1 4 latmcl K Lat X B W B X ˙ W B
40 35 36 38 39 syl3anc K HL W H X B ¬ X ˙ W q A ¬ q ˙ W X ˙ W B
41 1 2 4 latmle2 K Lat X B W B X ˙ W ˙ W
42 35 36 38 41 syl3anc K HL W H X B ¬ X ˙ W q A ¬ q ˙ W X ˙ W ˙ W
43 1 2 6 10 8 11 diblss K HL W H X ˙ W B X ˙ W ˙ W D X ˙ W S
44 30 40 42 43 syl12anc K HL W H X B ¬ X ˙ W q A ¬ q ˙ W D X ˙ W S
45 11 12 lsmcl U LMod C q S D X ˙ W S C q ˙ D X ˙ W S
46 31 33 44 45 syl3anc K HL W H X B ¬ X ˙ W q A ¬ q ˙ W C q ˙ D X ˙ W S
47 46 a1d K HL W H X B ¬ X ˙ W q A ¬ q ˙ W q ˙ X ˙ W = X C q ˙ D X ˙ W S
48 47 expr K HL W H X B ¬ X ˙ W q A ¬ q ˙ W q ˙ X ˙ W = X C q ˙ D X ˙ W S
49 48 impd K HL W H X B ¬ X ˙ W q A ¬ q ˙ W q ˙ X ˙ W = X C q ˙ D X ˙ W S
50 49 ancld K HL W H X B ¬ X ˙ W q A ¬ q ˙ W q ˙ X ˙ W = X ¬ q ˙ W q ˙ X ˙ W = X C q ˙ D X ˙ W S
51 50 reximdva K HL W H X B ¬ X ˙ W q A ¬ q ˙ W q ˙ X ˙ W = X q A ¬ q ˙ W q ˙ X ˙ W = X C q ˙ D X ˙ W S
52 29 51 mpd K HL W H X B ¬ X ˙ W q A ¬ q ˙ W q ˙ X ˙ W = X C q ˙ D X ˙ W S
53 breq1 q = r q ˙ W r ˙ W
54 53 notbid q = r ¬ q ˙ W ¬ r ˙ W
55 oveq1 q = r q ˙ X ˙ W = r ˙ X ˙ W
56 55 eqeq1d q = r q ˙ X ˙ W = X r ˙ X ˙ W = X
57 54 56 anbi12d q = r ¬ q ˙ W q ˙ X ˙ W = X ¬ r ˙ W r ˙ X ˙ W = X
58 fveq2 q = r C q = C r
59 58 oveq1d q = r C q ˙ D X ˙ W = C r ˙ D X ˙ W
60 57 59 reusv3 q A ¬ q ˙ W q ˙ X ˙ W = X C q ˙ D X ˙ W S q A r A ¬ q ˙ W q ˙ X ˙ W = X ¬ r ˙ W r ˙ X ˙ W = X C q ˙ D X ˙ W = C r ˙ D X ˙ W u S q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W
61 52 60 syl K HL W H X B ¬ X ˙ W q A r A ¬ q ˙ W q ˙ X ˙ W = X ¬ r ˙ W r ˙ X ˙ W = X C q ˙ D X ˙ W = C r ˙ D X ˙ W u S q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W
62 28 61 mpbid K HL W H X B ¬ X ˙ W u S q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W
63 reusv1 q A ¬ q ˙ W q ˙ X ˙ W = X ∃! u S q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W u S q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W
64 29 63 syl K HL W H X B ¬ X ˙ W ∃! u S q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W u S q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W
65 62 64 mpbird K HL W H X B ¬ X ˙ W ∃! u S q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W
66 riotacl ∃! u S q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W ι u S | q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W S
67 65 66 syl K HL W H X B ¬ X ˙ W ι u S | q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W S
68 13 67 eqeltrd K HL W H X B ¬ X ˙ W I X S