Metamath Proof Explorer


Theorem dihvalcqpre

Description: Value of isomorphism H for a lattice K when -. X .<_ W , given auxiliary atom Q . (Contributed by NM, 6-Mar-2014)

Ref Expression
Hypotheses dihval.b B = Base K
dihval.l ˙ = K
dihval.j ˙ = join K
dihval.m ˙ = meet K
dihval.a A = Atoms K
dihval.h H = LHyp K
dihval.i I = DIsoH K W
dihval.d D = DIsoB K W
dihval.c C = DIsoC K W
dihval.u U = DVecH K W
dihval.s S = LSubSp U
dihval.p ˙ = LSSum U
Assertion dihvalcqpre K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X I X = C Q ˙ D X ˙ W

Proof

Step Hyp Ref Expression
1 dihval.b B = Base K
2 dihval.l ˙ = K
3 dihval.j ˙ = join K
4 dihval.m ˙ = meet K
5 dihval.a A = Atoms K
6 dihval.h H = LHyp K
7 dihval.i I = DIsoH K W
8 dihval.d D = DIsoB K W
9 dihval.c C = DIsoC K W
10 dihval.u U = DVecH K W
11 dihval.s S = LSubSp U
12 dihval.p ˙ = LSSum U
13 11 fvexi S V
14 nfv q K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X
15 nfvd K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X q I X = C Q ˙ D X ˙ W
16 1 2 3 4 5 6 7 8 9 10 11 12 dihvalc K HL W H X B ¬ X ˙ W I X = ι u S | q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W
17 16 3adant3 K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X I X = ι u S | q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W
18 eqeq1 C q ˙ D X ˙ W = I X C q ˙ D X ˙ W = C Q ˙ D X ˙ W I X = C Q ˙ D X ˙ W
19 18 adantl K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X C q ˙ D X ˙ W = I X C q ˙ D X ˙ W = C Q ˙ D X ˙ W I X = C Q ˙ D X ˙ W
20 simpl1 K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X q A ¬ q ˙ W q ˙ X ˙ W = X K HL W H
21 simprl K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X q A ¬ q ˙ W q ˙ X ˙ W = X q A
22 simprrl K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X q A ¬ q ˙ W q ˙ X ˙ W = X ¬ q ˙ W
23 21 22 jca K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X q A ¬ q ˙ W q ˙ X ˙ W = X q A ¬ q ˙ W
24 simpl3l K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X q A ¬ q ˙ W q ˙ X ˙ W = X Q A ¬ Q ˙ W
25 simpl2l K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X q A ¬ q ˙ W q ˙ X ˙ W = X X B
26 simprrr K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X q A ¬ q ˙ W q ˙ X ˙ W = X q ˙ X ˙ W = X
27 simpl3r K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X q A ¬ q ˙ W q ˙ X ˙ W = X Q ˙ X ˙ W = X
28 26 27 eqtr4d K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X q A ¬ q ˙ W q ˙ X ˙ W = X q ˙ X ˙ W = Q ˙ X ˙ W
29 1 2 3 4 5 6 8 9 10 12 dihjust K HL W H q A ¬ q ˙ W Q A ¬ Q ˙ W X B q ˙ X ˙ W = Q ˙ X ˙ W C q ˙ D X ˙ W = C Q ˙ D X ˙ W
30 20 23 24 25 28 29 syl131anc K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X q A ¬ q ˙ W q ˙ X ˙ W = X C q ˙ D X ˙ W = C Q ˙ D X ˙ W
31 30 ex K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X q A ¬ q ˙ W q ˙ X ˙ W = X C q ˙ D X ˙ W = C Q ˙ D X ˙ W
32 1 2 3 4 5 6 7 8 9 10 11 12 dihlsscpre K HL W H X B ¬ X ˙ W I X S
33 32 3adant3 K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X I X S
34 1 2 3 4 5 6 lhpmcvr2 K HL W H X B ¬ X ˙ W q A ¬ q ˙ W q ˙ X ˙ W = X
35 34 3adant3 K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X q A ¬ q ˙ W q ˙ X ˙ W = X
36 14 15 17 19 31 33 35 riotasv3d K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X S V I X = C Q ˙ D X ˙ W
37 13 36 mpan2 K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X I X = C Q ˙ D X ˙ W