Metamath Proof Explorer


Theorem dihjust

Description: Part of proof after Lemma N of Crawley p. 122 line 4, "the definition of phi(x) is independent of the atom q." (Contributed by NM, 2-Mar-2014)

Ref Expression
Hypotheses dihjust.b B=BaseK
dihjust.l ˙=K
dihjust.j ˙=joinK
dihjust.m ˙=meetK
dihjust.a A=AtomsK
dihjust.h H=LHypK
dihjust.i I=DIsoBKW
dihjust.J J=DIsoCKW
dihjust.u U=DVecHKW
dihjust.s ˙=LSSumU
Assertion dihjust KHLWHQA¬Q˙WRA¬R˙WXBQ˙X˙W=R˙X˙WJQ˙IX˙W=JR˙IX˙W

Proof

Step Hyp Ref Expression
1 dihjust.b B=BaseK
2 dihjust.l ˙=K
3 dihjust.j ˙=joinK
4 dihjust.m ˙=meetK
5 dihjust.a A=AtomsK
6 dihjust.h H=LHypK
7 dihjust.i I=DIsoBKW
8 dihjust.J J=DIsoCKW
9 dihjust.u U=DVecHKW
10 dihjust.s ˙=LSSumU
11 1 2 3 4 5 6 7 8 9 10 dihjustlem KHLWHQA¬Q˙WRA¬R˙WXBQ˙X˙W=R˙X˙WJQ˙IX˙WJR˙IX˙W
12 simp1 KHLWHQA¬Q˙WRA¬R˙WXBQ˙X˙W=R˙X˙WKHLWH
13 simp22 KHLWHQA¬Q˙WRA¬R˙WXBQ˙X˙W=R˙X˙WRA¬R˙W
14 simp21 KHLWHQA¬Q˙WRA¬R˙WXBQ˙X˙W=R˙X˙WQA¬Q˙W
15 simp23 KHLWHQA¬Q˙WRA¬R˙WXBQ˙X˙W=R˙X˙WXB
16 simp3 KHLWHQA¬Q˙WRA¬R˙WXBQ˙X˙W=R˙X˙WQ˙X˙W=R˙X˙W
17 16 eqcomd KHLWHQA¬Q˙WRA¬R˙WXBQ˙X˙W=R˙X˙WR˙X˙W=Q˙X˙W
18 1 2 3 4 5 6 7 8 9 10 dihjustlem KHLWHRA¬R˙WQA¬Q˙WXBR˙X˙W=Q˙X˙WJR˙IX˙WJQ˙IX˙W
19 12 13 14 15 17 18 syl131anc KHLWHQA¬Q˙WRA¬R˙WXBQ˙X˙W=R˙X˙WJR˙IX˙WJQ˙IX˙W
20 11 19 eqssd KHLWHQA¬Q˙WRA¬R˙WXBQ˙X˙W=R˙X˙WJQ˙IX˙W=JR˙IX˙W