Metamath Proof Explorer


Theorem dihjust

Description: Part of proof after Lemma N of Crawley p. 122 line 4, "the definition of phi(x) is independent of the atom q." (Contributed by NM, 2-Mar-2014)

Ref Expression
Hypotheses dihjust.b B = Base K
dihjust.l ˙ = K
dihjust.j ˙ = join K
dihjust.m ˙ = meet K
dihjust.a A = Atoms K
dihjust.h H = LHyp K
dihjust.i I = DIsoB K W
dihjust.J J = DIsoC K W
dihjust.u U = DVecH K W
dihjust.s ˙ = LSSum U
Assertion dihjust K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B Q ˙ X ˙ W = R ˙ X ˙ W J Q ˙ I X ˙ W = J R ˙ I X ˙ W

Proof

Step Hyp Ref Expression
1 dihjust.b B = Base K
2 dihjust.l ˙ = K
3 dihjust.j ˙ = join K
4 dihjust.m ˙ = meet K
5 dihjust.a A = Atoms K
6 dihjust.h H = LHyp K
7 dihjust.i I = DIsoB K W
8 dihjust.J J = DIsoC K W
9 dihjust.u U = DVecH K W
10 dihjust.s ˙ = LSSum U
11 1 2 3 4 5 6 7 8 9 10 dihjustlem K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B Q ˙ X ˙ W = R ˙ X ˙ W J Q ˙ I X ˙ W J R ˙ I X ˙ W
12 simp1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B Q ˙ X ˙ W = R ˙ X ˙ W K HL W H
13 simp22 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B Q ˙ X ˙ W = R ˙ X ˙ W R A ¬ R ˙ W
14 simp21 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B Q ˙ X ˙ W = R ˙ X ˙ W Q A ¬ Q ˙ W
15 simp23 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B Q ˙ X ˙ W = R ˙ X ˙ W X B
16 simp3 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B Q ˙ X ˙ W = R ˙ X ˙ W Q ˙ X ˙ W = R ˙ X ˙ W
17 16 eqcomd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B Q ˙ X ˙ W = R ˙ X ˙ W R ˙ X ˙ W = Q ˙ X ˙ W
18 1 2 3 4 5 6 7 8 9 10 dihjustlem K HL W H R A ¬ R ˙ W Q A ¬ Q ˙ W X B R ˙ X ˙ W = Q ˙ X ˙ W J R ˙ I X ˙ W J Q ˙ I X ˙ W
19 12 13 14 15 17 18 syl131anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B Q ˙ X ˙ W = R ˙ X ˙ W J R ˙ I X ˙ W J Q ˙ I X ˙ W
20 11 19 eqssd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B Q ˙ X ˙ W = R ˙ X ˙ W J Q ˙ I X ˙ W = J R ˙ I X ˙ W