Metamath Proof Explorer


Theorem dihjust

Description: Part of proof after Lemma N of Crawley p. 122 line 4, "the definition of phi(x) is independent of the atom q." (Contributed by NM, 2-Mar-2014)

Ref Expression
Hypotheses dihjust.b 𝐵 = ( Base ‘ 𝐾 )
dihjust.l = ( le ‘ 𝐾 )
dihjust.j = ( join ‘ 𝐾 )
dihjust.m = ( meet ‘ 𝐾 )
dihjust.a 𝐴 = ( Atoms ‘ 𝐾 )
dihjust.h 𝐻 = ( LHyp ‘ 𝐾 )
dihjust.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
dihjust.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
dihjust.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihjust.s = ( LSSum ‘ 𝑈 )
Assertion dihjust ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = ( 𝑅 ( 𝑋 𝑊 ) ) ) → ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) = ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) )

Proof

Step Hyp Ref Expression
1 dihjust.b 𝐵 = ( Base ‘ 𝐾 )
2 dihjust.l = ( le ‘ 𝐾 )
3 dihjust.j = ( join ‘ 𝐾 )
4 dihjust.m = ( meet ‘ 𝐾 )
5 dihjust.a 𝐴 = ( Atoms ‘ 𝐾 )
6 dihjust.h 𝐻 = ( LHyp ‘ 𝐾 )
7 dihjust.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
8 dihjust.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
9 dihjust.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
10 dihjust.s = ( LSSum ‘ 𝑈 )
11 1 2 3 4 5 6 7 8 9 10 dihjustlem ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = ( 𝑅 ( 𝑋 𝑊 ) ) ) → ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) )
12 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = ( 𝑅 ( 𝑋 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = ( 𝑅 ( 𝑋 𝑊 ) ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
14 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = ( 𝑅 ( 𝑋 𝑊 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
15 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = ( 𝑅 ( 𝑋 𝑊 ) ) ) → 𝑋𝐵 )
16 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = ( 𝑅 ( 𝑋 𝑊 ) ) ) → ( 𝑄 ( 𝑋 𝑊 ) ) = ( 𝑅 ( 𝑋 𝑊 ) ) )
17 16 eqcomd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = ( 𝑅 ( 𝑋 𝑊 ) ) ) → ( 𝑅 ( 𝑋 𝑊 ) ) = ( 𝑄 ( 𝑋 𝑊 ) ) )
18 1 2 3 4 5 6 7 8 9 10 dihjustlem ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝑅 ( 𝑋 𝑊 ) ) = ( 𝑄 ( 𝑋 𝑊 ) ) ) → ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) )
19 12 13 14 15 17 18 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = ( 𝑅 ( 𝑋 𝑊 ) ) ) → ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) )
20 11 19 eqssd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑋𝐵 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = ( 𝑅 ( 𝑋 𝑊 ) ) ) → ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) = ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) )