Step |
Hyp |
Ref |
Expression |
1 |
|
dihjust.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihjust.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihjust.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dihjust.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
dihjust.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
dihjust.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
dihjust.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihjust.J |
⊢ 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dihjust.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dihjust.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
dihjustlem |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) ) → ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
12 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
14 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
15 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) ) → 𝑋 ∈ 𝐵 ) |
16 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) ) → ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
17 |
16
|
eqcomd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) ) → ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
18 |
1 2 3 4 5 6 7 8 9 10
|
dihjustlem |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) ) → ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
19 |
12 13 14 15 17 18
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) ) → ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
20 |
11 19
|
eqssd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑅 ∨ ( 𝑋 ∧ 𝑊 ) ) ) → ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) = ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |