| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihjust.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dihjust.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dihjust.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
dihjust.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 5 |
|
dihjust.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 6 |
|
dihjust.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 7 |
|
dihjust.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
dihjust.J |
⊢ 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
dihjust.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 10 |
|
dihjust.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 11 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 12 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
| 13 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
| 14 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → 𝐾 ∈ HL ) |
| 15 |
14
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → 𝐾 ∈ Lat ) |
| 16 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 17 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑊 ∈ 𝐻 ) |
| 18 |
1 6
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
| 19 |
17 18
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑊 ∈ 𝐵 ) |
| 20 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ) |
| 21 |
15 16 19 20
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ) |
| 22 |
1 2 4
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑊 ) ≤ 𝑊 ) |
| 23 |
15 16 19 22
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝑌 ∧ 𝑊 ) ≤ 𝑊 ) |
| 24 |
21 23
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ∧ ( 𝑌 ∧ 𝑊 ) ≤ 𝑊 ) ) |
| 25 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑄 ∈ 𝐴 ) |
| 26 |
1 5
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 27 |
25 26
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑄 ∈ 𝐵 ) |
| 28 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 29 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
| 30 |
15 28 19 29
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
| 31 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) → ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝐵 ) |
| 32 |
15 27 30 31
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝐵 ) |
| 33 |
1 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) → 𝑄 ≤ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
| 34 |
15 27 30 33
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑄 ≤ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
| 35 |
|
simp31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
| 36 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑋 ≤ 𝑌 ) |
| 37 |
35 36
|
eqbrtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) ≤ 𝑌 ) |
| 38 |
1 2 15 27 32 16 34 37
|
lattrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑄 ≤ 𝑌 ) |
| 39 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ) |
| 40 |
38 39
|
breqtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑄 ≤ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) ) |
| 41 |
1 2 3 5 6 9 10 7 8
|
cdlemn5 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ∧ ( 𝑌 ∧ 𝑊 ) ≤ 𝑊 ) ) ∧ 𝑄 ≤ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) ) → ( 𝐽 ‘ 𝑄 ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) |
| 42 |
11 12 13 24 40 41
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝐽 ‘ 𝑄 ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) |
| 43 |
1 2 4
|
latmlem1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 ∧ 𝑊 ) ≤ ( 𝑌 ∧ 𝑊 ) ) ) |
| 44 |
15 28 16 19 43
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 ∧ 𝑊 ) ≤ ( 𝑌 ∧ 𝑊 ) ) ) |
| 45 |
36 44
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝑋 ∧ 𝑊 ) ≤ ( 𝑌 ∧ 𝑊 ) ) |
| 46 |
1 2 4
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) |
| 47 |
15 28 19 46
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) |
| 48 |
1 2 6 7
|
dibord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) ∧ ( ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ∧ ( 𝑌 ∧ 𝑊 ) ≤ 𝑊 ) ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ⊆ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ↔ ( 𝑋 ∧ 𝑊 ) ≤ ( 𝑌 ∧ 𝑊 ) ) ) |
| 49 |
11 30 47 21 23 48
|
syl122anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ⊆ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ↔ ( 𝑋 ∧ 𝑊 ) ≤ ( 𝑌 ∧ 𝑊 ) ) ) |
| 50 |
45 49
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ⊆ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) |
| 51 |
6 9 11
|
dvhlmod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → 𝑈 ∈ LMod ) |
| 52 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 53 |
52
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 54 |
51 53
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 55 |
2 5 6 9 8 52
|
diclss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝐽 ‘ 𝑅 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 56 |
11 12 55
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝐽 ‘ 𝑅 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 57 |
54 56
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝐽 ‘ 𝑅 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 58 |
1 2 6 9 7 52
|
diblss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ∧ ( 𝑌 ∧ 𝑊 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 59 |
11 21 23 58
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 60 |
54 59
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 61 |
10
|
lsmub2 |
⊢ ( ( ( 𝐽 ‘ 𝑅 ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) |
| 62 |
57 60 61
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) |
| 63 |
50 62
|
sstrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) |
| 64 |
2 5 6 9 8 52
|
diclss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐽 ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 65 |
11 13 64
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝐽 ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 66 |
54 65
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝐽 ‘ 𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 67 |
1 2 6 9 7 52
|
diblss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 68 |
11 30 47 67
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 69 |
54 68
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 70 |
52 10
|
lsmcl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝐽 ‘ 𝑅 ) ∈ ( LSubSp ‘ 𝑈 ) ∧ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 71 |
51 56 59 70
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 72 |
54 71
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 73 |
10
|
lsmlub |
⊢ ( ( ( 𝐽 ‘ 𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( ( ( 𝐽 ‘ 𝑄 ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ∧ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ↔ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) |
| 74 |
66 69 72 73
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( ( ( 𝐽 ‘ 𝑄 ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ∧ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ↔ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) |
| 75 |
42 63 74
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ 𝑋 ≤ 𝑌 ) ) → ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) |