Metamath Proof Explorer


Theorem dihord1

Description: Part of proof after Lemma N of Crawley p. 122. Forward ordering property. TODO: change ( Q .\/ ( X ./\ W ) ) = X to Q .<_ X using lhpmcvr3 , here and all theorems below. (Contributed by NM, 2-Mar-2014)

Ref Expression
Hypotheses dihjust.b 𝐵 = ( Base ‘ 𝐾 )
dihjust.l = ( le ‘ 𝐾 )
dihjust.j = ( join ‘ 𝐾 )
dihjust.m = ( meet ‘ 𝐾 )
dihjust.a 𝐴 = ( Atoms ‘ 𝐾 )
dihjust.h 𝐻 = ( LHyp ‘ 𝐾 )
dihjust.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
dihjust.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
dihjust.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihjust.s = ( LSSum ‘ 𝑈 )
Assertion dihord1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) )

Proof

Step Hyp Ref Expression
1 dihjust.b 𝐵 = ( Base ‘ 𝐾 )
2 dihjust.l = ( le ‘ 𝐾 )
3 dihjust.j = ( join ‘ 𝐾 )
4 dihjust.m = ( meet ‘ 𝐾 )
5 dihjust.a 𝐴 = ( Atoms ‘ 𝐾 )
6 dihjust.h 𝐻 = ( LHyp ‘ 𝐾 )
7 dihjust.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
8 dihjust.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
9 dihjust.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
10 dihjust.s = ( LSSum ‘ 𝑈 )
11 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
13 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
14 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → 𝐾 ∈ HL )
15 14 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → 𝐾 ∈ Lat )
16 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → 𝑌𝐵 )
17 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → 𝑊𝐻 )
18 1 6 lhpbase ( 𝑊𝐻𝑊𝐵 )
19 17 18 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → 𝑊𝐵 )
20 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵 ) → ( 𝑌 𝑊 ) ∈ 𝐵 )
21 15 16 19 20 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝑌 𝑊 ) ∈ 𝐵 )
22 1 2 4 latmle2 ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵 ) → ( 𝑌 𝑊 ) 𝑊 )
23 15 16 19 22 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝑌 𝑊 ) 𝑊 )
24 21 23 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( ( 𝑌 𝑊 ) ∈ 𝐵 ∧ ( 𝑌 𝑊 ) 𝑊 ) )
25 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → 𝑄𝐴 )
26 1 5 atbase ( 𝑄𝐴𝑄𝐵 )
27 25 26 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → 𝑄𝐵 )
28 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → 𝑋𝐵 )
29 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
30 15 28 19 29 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
31 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ ( 𝑋 𝑊 ) ∈ 𝐵 ) → ( 𝑄 ( 𝑋 𝑊 ) ) ∈ 𝐵 )
32 15 27 30 31 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝑄 ( 𝑋 𝑊 ) ) ∈ 𝐵 )
33 1 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑄𝐵 ∧ ( 𝑋 𝑊 ) ∈ 𝐵 ) → 𝑄 ( 𝑄 ( 𝑋 𝑊 ) ) )
34 15 27 30 33 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → 𝑄 ( 𝑄 ( 𝑋 𝑊 ) ) )
35 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 )
36 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → 𝑋 𝑌 )
37 35 36 eqbrtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝑄 ( 𝑋 𝑊 ) ) 𝑌 )
38 1 2 15 27 32 16 34 37 lattrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → 𝑄 𝑌 )
39 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌 )
40 38 39 breqtrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → 𝑄 ( 𝑅 ( 𝑌 𝑊 ) ) )
41 1 2 3 5 6 9 10 7 8 cdlemn5 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( ( 𝑌 𝑊 ) ∈ 𝐵 ∧ ( 𝑌 𝑊 ) 𝑊 ) ) ∧ 𝑄 ( 𝑅 ( 𝑌 𝑊 ) ) ) → ( 𝐽𝑄 ) ⊆ ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) )
42 11 12 13 24 40 41 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝐽𝑄 ) ⊆ ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) )
43 1 2 4 latmlem1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑊𝐵 ) ) → ( 𝑋 𝑌 → ( 𝑋 𝑊 ) ( 𝑌 𝑊 ) ) )
44 15 28 16 19 43 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝑋 𝑌 → ( 𝑋 𝑊 ) ( 𝑌 𝑊 ) ) )
45 36 44 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝑋 𝑊 ) ( 𝑌 𝑊 ) )
46 1 2 4 latmle2 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) 𝑊 )
47 15 28 19 46 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝑋 𝑊 ) 𝑊 )
48 1 2 6 7 dibord ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑋 𝑊 ) ∈ 𝐵 ∧ ( 𝑋 𝑊 ) 𝑊 ) ∧ ( ( 𝑌 𝑊 ) ∈ 𝐵 ∧ ( 𝑌 𝑊 ) 𝑊 ) ) → ( ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ⊆ ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ↔ ( 𝑋 𝑊 ) ( 𝑌 𝑊 ) ) )
49 11 30 47 21 23 48 syl122anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ⊆ ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ↔ ( 𝑋 𝑊 ) ( 𝑌 𝑊 ) ) )
50 45 49 mpbird ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ⊆ ( 𝐼 ‘ ( 𝑌 𝑊 ) ) )
51 6 9 11 dvhlmod ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → 𝑈 ∈ LMod )
52 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
53 52 lsssssubg ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) )
54 51 53 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) )
55 2 5 6 9 8 52 diclss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝐽𝑅 ) ∈ ( LSubSp ‘ 𝑈 ) )
56 11 12 55 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝐽𝑅 ) ∈ ( LSubSp ‘ 𝑈 ) )
57 54 56 sseldd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝐽𝑅 ) ∈ ( SubGrp ‘ 𝑈 ) )
58 1 2 6 9 7 52 diblss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑌 𝑊 ) ∈ 𝐵 ∧ ( 𝑌 𝑊 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
59 11 21 23 58 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
60 54 59 sseldd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ∈ ( SubGrp ‘ 𝑈 ) )
61 10 lsmub2 ( ( ( 𝐽𝑅 ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ⊆ ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) )
62 57 60 61 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ⊆ ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) )
63 50 62 sstrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ⊆ ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) )
64 2 5 6 9 8 52 diclss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐽𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) )
65 11 13 64 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝐽𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) )
66 54 65 sseldd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝐽𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) )
67 1 2 6 9 7 52 diblss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑋 𝑊 ) ∈ 𝐵 ∧ ( 𝑋 𝑊 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
68 11 30 47 67 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
69 54 68 sseldd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ∈ ( SubGrp ‘ 𝑈 ) )
70 52 10 lsmcl ( ( 𝑈 ∈ LMod ∧ ( 𝐽𝑅 ) ∈ ( LSubSp ‘ 𝑈 ) ∧ ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∈ ( LSubSp ‘ 𝑈 ) )
71 51 56 59 70 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∈ ( LSubSp ‘ 𝑈 ) )
72 54 71 sseldd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∈ ( SubGrp ‘ 𝑈 ) )
73 10 lsmlub ( ( ( 𝐽𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( ( ( 𝐽𝑄 ) ⊆ ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ⊆ ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ↔ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) )
74 66 69 72 73 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( ( ( 𝐽𝑄 ) ⊆ ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ∧ ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ⊆ ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) ↔ ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) ) )
75 42 63 74 mpbi2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ( 𝑌 𝑊 ) ) = 𝑌𝑋 𝑌 ) ) → ( ( 𝐽𝑄 ) ( 𝐼 ‘ ( 𝑋 𝑊 ) ) ) ⊆ ( ( 𝐽𝑅 ) ( 𝐼 ‘ ( 𝑌 𝑊 ) ) ) )