Step |
Hyp |
Ref |
Expression |
1 |
|
dihjust.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihjust.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihjust.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dihjust.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
dihjust.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
dihjust.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
dihjust.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihjust.J |
⊢ 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dihjust.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dihjust.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
11 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
6 9 11
|
dvhlmod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → 𝑈 ∈ LMod ) |
13 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
14 |
13
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
15 |
12 14
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
16 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
17 |
2 5 6 9 8 13
|
diclss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐽 ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
18 |
11 16 17
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( 𝐽 ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
19 |
15 18
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( 𝐽 ‘ 𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
20 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → 𝐾 ∈ HL ) |
21 |
20
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → 𝐾 ∈ Lat ) |
22 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → 𝑋 ∈ 𝐵 ) |
23 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → 𝑊 ∈ 𝐻 ) |
24 |
1 6
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
25 |
23 24
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → 𝑊 ∈ 𝐵 ) |
26 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
27 |
21 22 25 26
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
28 |
1 2 4
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) |
29 |
21 22 25 28
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) |
30 |
1 2 6 9 7 13
|
diblss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
31 |
11 27 29 30
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
32 |
15 31
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
33 |
10
|
lsmub1 |
⊢ ( ( ( 𝐽 ‘ 𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( 𝐽 ‘ 𝑄 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
34 |
19 32 33
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( 𝐽 ‘ 𝑄 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
35 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) |
36 |
34 35
|
sstrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( 𝐽 ‘ 𝑄 ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) |
37 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
38 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → 𝑌 ∈ 𝐵 ) |
39 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ) |
40 |
21 38 25 39
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ) |
41 |
1 2 4
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑊 ) ≤ 𝑊 ) |
42 |
21 38 25 41
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( 𝑌 ∧ 𝑊 ) ≤ 𝑊 ) |
43 |
40 42
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ∧ ( 𝑌 ∧ 𝑊 ) ≤ 𝑊 ) ) |
44 |
1 2 3 5 6 7 8 9 10
|
cdlemn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ∧ ( 𝑌 ∧ 𝑊 ) ≤ 𝑊 ) ) ) → ( 𝑄 ≤ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) ↔ ( 𝐽 ‘ 𝑄 ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) |
45 |
11 37 16 43 44
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → ( 𝑄 ≤ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) ↔ ( 𝐽 ‘ 𝑄 ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) |
46 |
36 45
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) = 𝑌 ∧ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ⊆ ( ( 𝐽 ‘ 𝑅 ) ⊕ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) ) → 𝑄 ≤ ( 𝑅 ∨ ( 𝑌 ∧ 𝑊 ) ) ) |