Step |
Hyp |
Ref |
Expression |
1 |
|
diclss.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
diclss.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
diclss.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
diclss.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
diclss.i |
⊢ 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
diclss.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
7 |
|
eqidd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) ) |
8 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
10 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
11 |
3 8 4 9 10
|
dvhbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
12 |
11
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
14 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
16 |
3 14 8 4 15
|
dvhvbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝑈 ) = ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
17 |
16
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ 𝑈 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ 𝑈 ) ) |
19 |
|
eqidd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) ) |
20 |
|
eqidd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) ) |
21 |
6
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝑆 = ( LSubSp ‘ 𝑈 ) ) |
22 |
1 2 3 5 4 15
|
dicssdvh |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) ⊆ ( Base ‘ 𝑈 ) ) |
23 |
22 18
|
sseqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) ⊆ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
24 |
1 2 3 5
|
dicn0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) ≠ ∅ ) |
25 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑄 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
26 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑄 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑄 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
27 |
|
simpr1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑄 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑄 ) ) ) → 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
28 |
|
simpr2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑄 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑄 ) ) ) → 𝑎 ∈ ( 𝐼 ‘ 𝑄 ) ) |
29 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
30 |
1 2 3 8 4 5 29
|
dicvscacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑄 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) ∈ ( 𝐼 ‘ 𝑄 ) ) |
31 |
25 26 27 28 30
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑄 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑄 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) ∈ ( 𝐼 ‘ 𝑄 ) ) |
32 |
|
simpr3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑄 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑄 ) ) ) → 𝑏 ∈ ( 𝐼 ‘ 𝑄 ) ) |
33 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
34 |
1 2 3 4 5 33
|
dicvaddcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) ∈ ( 𝐼 ‘ 𝑄 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑄 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) ( +g ‘ 𝑈 ) 𝑏 ) ∈ ( 𝐼 ‘ 𝑄 ) ) |
35 |
25 26 31 32 34
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑎 ∈ ( 𝐼 ‘ 𝑄 ) ∧ 𝑏 ∈ ( 𝐼 ‘ 𝑄 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 𝑎 ) ( +g ‘ 𝑈 ) 𝑏 ) ∈ ( 𝐼 ‘ 𝑄 ) ) |
36 |
7 13 18 19 20 21 23 24 35
|
islssd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) ∈ 𝑆 ) |