| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dicssdvh.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | dicssdvh.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 3 |  | dicssdvh.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 4 |  | dicssdvh.i | ⊢ 𝐼  =  ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | dicssdvh.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | dicssdvh.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 7 |  | simprl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )  →  𝑓  =  ( 𝑠 ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) ) ) | 
						
							| 8 |  | simpll | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | simprr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )  →  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 10 |  | eqid | ⊢ ( oc ‘ 𝐾 )  =  ( oc ‘ 𝐾 ) | 
						
							| 11 | 1 10 2 3 | lhpocnel | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  𝐴  ∧  ¬  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ≤  𝑊 ) ) | 
						
							| 12 | 11 | ad2antrr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  𝐴  ∧  ¬  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ≤  𝑊 ) ) | 
						
							| 13 |  | simplr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) | 
						
							| 14 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 15 |  | eqid | ⊢ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 )  =  ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) | 
						
							| 16 | 1 2 3 14 15 | ltrniotacl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  𝐴  ∧  ¬  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 )  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 17 | 8 12 13 16 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )  →  ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 )  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 18 |  | eqid | ⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 19 | 3 14 18 | tendocl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )  ∧  ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 )  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )  →  ( 𝑠 ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 20 | 8 9 17 19 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )  →  ( 𝑠 ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 21 | 7 20 | eqeltrd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )  →  𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 22 | 21 9 9 | jca31 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )  →  ( ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 23 | 22 | ex | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )  →  ( ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 24 | 23 | ssopab2dv | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  { 〈 𝑓 ,  𝑠 〉  ∣  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) }  ⊆  { 〈 𝑓 ,  𝑠 〉  ∣  ( ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) | 
						
							| 25 |  | opabssxp | ⊢ { 〈 𝑓 ,  𝑠 〉  ∣  ( ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) }  ⊆  ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ×  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 26 | 24 25 | sstrdi | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  { 〈 𝑓 ,  𝑠 〉  ∣  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) }  ⊆  ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ×  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 27 |  | eqid | ⊢ ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 28 | 1 2 3 27 14 18 4 | dicval | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( 𝐼 ‘ 𝑄 )  =  { 〈 𝑓 ,  𝑠 〉  ∣  ( 𝑓  =  ( 𝑠 ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  ∧  𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) | 
						
							| 29 | 3 14 18 5 6 | dvhvbase | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝑉  =  ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ×  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  𝑉  =  ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ×  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 31 | 26 28 30 | 3sstr4d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( 𝐼 ‘ 𝑄 )  ⊆  𝑉 ) |