Metamath Proof Explorer


Theorem dicssdvh

Description: The partial isomorphism C maps to a set of vectors in full vector space H. (Contributed by NM, 19-Jan-2014)

Ref Expression
Hypotheses dicssdvh.l = ( le ‘ 𝐾 )
dicssdvh.a 𝐴 = ( Atoms ‘ 𝐾 )
dicssdvh.h 𝐻 = ( LHyp ‘ 𝐾 )
dicssdvh.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
dicssdvh.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dicssdvh.v 𝑉 = ( Base ‘ 𝑈 )
Assertion dicssdvh ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) ⊆ 𝑉 )

Proof

Step Hyp Ref Expression
1 dicssdvh.l = ( le ‘ 𝐾 )
2 dicssdvh.a 𝐴 = ( Atoms ‘ 𝐾 )
3 dicssdvh.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dicssdvh.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
5 dicssdvh.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 dicssdvh.v 𝑉 = ( Base ‘ 𝑈 )
7 simprl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑓 = ( 𝑠 ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 𝑓 = ( 𝑠 ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) )
8 simpll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑓 = ( 𝑠 ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 simprr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑓 = ( 𝑠 ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
10 eqid ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 )
11 1 10 2 3 lhpocnel ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) 𝑊 ) )
12 11 ad2antrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑓 = ( 𝑠 ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) 𝑊 ) )
13 simplr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑓 = ( 𝑠 ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
14 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
15 eqid ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) = ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 )
16 1 2 3 14 15 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
17 8 12 13 16 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑓 = ( 𝑠 ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
18 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
19 3 14 18 tendocl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑠 ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
20 8 9 17 19 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑓 = ( 𝑠 ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑠 ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
21 7 20 eqeltrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑓 = ( 𝑠 ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
22 21 9 9 jca31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑓 = ( 𝑠 ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
23 22 ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑓 = ( 𝑠 ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
24 23 ssopab2dv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ⊆ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } )
25 opabssxp { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ⊆ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
26 24 25 sstrdi ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ⊆ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
27 eqid ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
28 1 2 3 27 14 18 4 dicval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) = { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } )
29 3 14 18 5 6 dvhvbase ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑉 = ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
30 29 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝑉 = ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
31 26 28 30 3sstr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) ⊆ 𝑉 )