Metamath Proof Explorer


Theorem dicval

Description: The partial isomorphism C for a lattice K . (Contributed by NM, 15-Dec-2013) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses dicval.l = ( le ‘ 𝐾 )
dicval.a 𝐴 = ( Atoms ‘ 𝐾 )
dicval.h 𝐻 = ( LHyp ‘ 𝐾 )
dicval.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
dicval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dicval.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dicval.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
Assertion dicval ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) = { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) } )

Proof

Step Hyp Ref Expression
1 dicval.l = ( le ‘ 𝐾 )
2 dicval.a 𝐴 = ( Atoms ‘ 𝐾 )
3 dicval.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dicval.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
5 dicval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 dicval.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
7 dicval.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
8 1 2 3 4 5 6 7 dicfval ( ( 𝐾𝑉𝑊𝐻 ) → 𝐼 = ( 𝑞 ∈ { 𝑟𝐴 ∣ ¬ 𝑟 𝑊 } ↦ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑞 ) ) ∧ 𝑠𝐸 ) } ) )
9 8 adantr ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐼 = ( 𝑞 ∈ { 𝑟𝐴 ∣ ¬ 𝑟 𝑊 } ↦ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑞 ) ) ∧ 𝑠𝐸 ) } ) )
10 9 fveq1d ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) = ( ( 𝑞 ∈ { 𝑟𝐴 ∣ ¬ 𝑟 𝑊 } ↦ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑞 ) ) ∧ 𝑠𝐸 ) } ) ‘ 𝑄 ) )
11 simpr ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
12 breq1 ( 𝑟 = 𝑄 → ( 𝑟 𝑊𝑄 𝑊 ) )
13 12 notbid ( 𝑟 = 𝑄 → ( ¬ 𝑟 𝑊 ↔ ¬ 𝑄 𝑊 ) )
14 13 elrab ( 𝑄 ∈ { 𝑟𝐴 ∣ ¬ 𝑟 𝑊 } ↔ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
15 11 14 sylibr ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝑄 ∈ { 𝑟𝐴 ∣ ¬ 𝑟 𝑊 } )
16 eqeq2 ( 𝑞 = 𝑄 → ( ( 𝑔𝑃 ) = 𝑞 ↔ ( 𝑔𝑃 ) = 𝑄 ) )
17 16 riotabidv ( 𝑞 = 𝑄 → ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑞 ) = ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) )
18 17 fveq2d ( 𝑞 = 𝑄 → ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑞 ) ) = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) )
19 18 eqeq2d ( 𝑞 = 𝑄 → ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑞 ) ) ↔ 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ) )
20 19 anbi1d ( 𝑞 = 𝑄 → ( ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑞 ) ) ∧ 𝑠𝐸 ) ↔ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) ) )
21 20 opabbidv ( 𝑞 = 𝑄 → { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑞 ) ) ∧ 𝑠𝐸 ) } = { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) } )
22 eqid ( 𝑞 ∈ { 𝑟𝐴 ∣ ¬ 𝑟 𝑊 } ↦ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑞 ) ) ∧ 𝑠𝐸 ) } ) = ( 𝑞 ∈ { 𝑟𝐴 ∣ ¬ 𝑟 𝑊 } ↦ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑞 ) ) ∧ 𝑠𝐸 ) } )
23 6 fvexi 𝐸 ∈ V
24 23 uniex 𝐸 ∈ V
25 24 rnex ran 𝐸 ∈ V
26 25 uniex ran 𝐸 ∈ V
27 26 pwex 𝒫 ran 𝐸 ∈ V
28 27 23 xpex ( 𝒫 ran 𝐸 × 𝐸 ) ∈ V
29 simpl ( ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) → 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) )
30 fvssunirn ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ⊆ ran 𝑠
31 elssuni ( 𝑠𝐸𝑠 𝐸 )
32 31 adantl ( ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) → 𝑠 𝐸 )
33 rnss ( 𝑠 𝐸 → ran 𝑠 ⊆ ran 𝐸 )
34 uniss ( ran 𝑠 ⊆ ran 𝐸 ran 𝑠 ran 𝐸 )
35 32 33 34 3syl ( ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) → ran 𝑠 ran 𝐸 )
36 30 35 sstrid ( ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) → ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ⊆ ran 𝐸 )
37 26 elpw2 ( ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∈ 𝒫 ran 𝐸 ↔ ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ⊆ ran 𝐸 )
38 36 37 sylibr ( ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) → ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∈ 𝒫 ran 𝐸 )
39 29 38 eqeltrd ( ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) → 𝑓 ∈ 𝒫 ran 𝐸 )
40 simpr ( ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) → 𝑠𝐸 )
41 39 40 jca ( ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) → ( 𝑓 ∈ 𝒫 ran 𝐸𝑠𝐸 ) )
42 41 ssopab2i { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) } ⊆ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 ∈ 𝒫 ran 𝐸𝑠𝐸 ) }
43 df-xp ( 𝒫 ran 𝐸 × 𝐸 ) = { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 ∈ 𝒫 ran 𝐸𝑠𝐸 ) }
44 42 43 sseqtrri { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) } ⊆ ( 𝒫 ran 𝐸 × 𝐸 )
45 28 44 ssexi { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) } ∈ V
46 21 22 45 fvmpt ( 𝑄 ∈ { 𝑟𝐴 ∣ ¬ 𝑟 𝑊 } → ( ( 𝑞 ∈ { 𝑟𝐴 ∣ ¬ 𝑟 𝑊 } ↦ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑞 ) ) ∧ 𝑠𝐸 ) } ) ‘ 𝑄 ) = { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) } )
47 15 46 syl ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑞 ∈ { 𝑟𝐴 ∣ ¬ 𝑟 𝑊 } ↦ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑞 ) ) ∧ 𝑠𝐸 ) } ) ‘ 𝑄 ) = { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) } )
48 10 47 eqtrd ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) = { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) } )