Step |
Hyp |
Ref |
Expression |
1 |
|
dicval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
dicval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
dicval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dicval.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dicval.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
dicval.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
dicval.i |
⊢ 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
1 2 3 4 5 6 7
|
dicfval |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐼 = ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ∧ 𝑠 ∈ 𝐸 ) } ) ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐼 = ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ∧ 𝑠 ∈ 𝐸 ) } ) ) |
10 |
9
|
fveq1d |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) = ( ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ∧ 𝑠 ∈ 𝐸 ) } ) ‘ 𝑄 ) ) |
11 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
12 |
|
breq1 |
⊢ ( 𝑟 = 𝑄 → ( 𝑟 ≤ 𝑊 ↔ 𝑄 ≤ 𝑊 ) ) |
13 |
12
|
notbid |
⊢ ( 𝑟 = 𝑄 → ( ¬ 𝑟 ≤ 𝑊 ↔ ¬ 𝑄 ≤ 𝑊 ) ) |
14 |
13
|
elrab |
⊢ ( 𝑄 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊 } ↔ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
15 |
11 14
|
sylibr |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝑄 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊 } ) |
16 |
|
eqeq2 |
⊢ ( 𝑞 = 𝑄 → ( ( 𝑔 ‘ 𝑃 ) = 𝑞 ↔ ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) |
17 |
16
|
riotabidv |
⊢ ( 𝑞 = 𝑄 → ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) = ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝑞 = 𝑄 → ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ) |
19 |
18
|
eqeq2d |
⊢ ( 𝑞 = 𝑄 → ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ↔ 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ) ) |
20 |
19
|
anbi1d |
⊢ ( 𝑞 = 𝑄 → ( ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ∧ 𝑠 ∈ 𝐸 ) ↔ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ 𝐸 ) ) ) |
21 |
20
|
opabbidv |
⊢ ( 𝑞 = 𝑄 → { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ∧ 𝑠 ∈ 𝐸 ) } = { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ 𝐸 ) } ) |
22 |
|
eqid |
⊢ ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ∧ 𝑠 ∈ 𝐸 ) } ) = ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ∧ 𝑠 ∈ 𝐸 ) } ) |
23 |
6
|
fvexi |
⊢ 𝐸 ∈ V |
24 |
23
|
uniex |
⊢ ∪ 𝐸 ∈ V |
25 |
24
|
rnex |
⊢ ran ∪ 𝐸 ∈ V |
26 |
25
|
uniex |
⊢ ∪ ran ∪ 𝐸 ∈ V |
27 |
26
|
pwex |
⊢ 𝒫 ∪ ran ∪ 𝐸 ∈ V |
28 |
27 23
|
xpex |
⊢ ( 𝒫 ∪ ran ∪ 𝐸 × 𝐸 ) ∈ V |
29 |
|
simpl |
⊢ ( ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ 𝐸 ) → 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ) |
30 |
|
fvssunirn |
⊢ ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ⊆ ∪ ran 𝑠 |
31 |
|
elssuni |
⊢ ( 𝑠 ∈ 𝐸 → 𝑠 ⊆ ∪ 𝐸 ) |
32 |
31
|
adantl |
⊢ ( ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ 𝐸 ) → 𝑠 ⊆ ∪ 𝐸 ) |
33 |
|
rnss |
⊢ ( 𝑠 ⊆ ∪ 𝐸 → ran 𝑠 ⊆ ran ∪ 𝐸 ) |
34 |
|
uniss |
⊢ ( ran 𝑠 ⊆ ran ∪ 𝐸 → ∪ ran 𝑠 ⊆ ∪ ran ∪ 𝐸 ) |
35 |
32 33 34
|
3syl |
⊢ ( ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ 𝐸 ) → ∪ ran 𝑠 ⊆ ∪ ran ∪ 𝐸 ) |
36 |
30 35
|
sstrid |
⊢ ( ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ⊆ ∪ ran ∪ 𝐸 ) |
37 |
26
|
elpw2 |
⊢ ( ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∈ 𝒫 ∪ ran ∪ 𝐸 ↔ ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ⊆ ∪ ran ∪ 𝐸 ) |
38 |
36 37
|
sylibr |
⊢ ( ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∈ 𝒫 ∪ ran ∪ 𝐸 ) |
39 |
29 38
|
eqeltrd |
⊢ ( ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ 𝐸 ) → 𝑓 ∈ 𝒫 ∪ ran ∪ 𝐸 ) |
40 |
|
simpr |
⊢ ( ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ 𝐸 ) → 𝑠 ∈ 𝐸 ) |
41 |
39 40
|
jca |
⊢ ( ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝑓 ∈ 𝒫 ∪ ran ∪ 𝐸 ∧ 𝑠 ∈ 𝐸 ) ) |
42 |
41
|
ssopab2i |
⊢ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ 𝐸 ) } ⊆ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 ∈ 𝒫 ∪ ran ∪ 𝐸 ∧ 𝑠 ∈ 𝐸 ) } |
43 |
|
df-xp |
⊢ ( 𝒫 ∪ ran ∪ 𝐸 × 𝐸 ) = { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 ∈ 𝒫 ∪ ran ∪ 𝐸 ∧ 𝑠 ∈ 𝐸 ) } |
44 |
42 43
|
sseqtrri |
⊢ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ 𝐸 ) } ⊆ ( 𝒫 ∪ ran ∪ 𝐸 × 𝐸 ) |
45 |
28 44
|
ssexi |
⊢ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ 𝐸 ) } ∈ V |
46 |
21 22 45
|
fvmpt |
⊢ ( 𝑄 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊 } → ( ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ∧ 𝑠 ∈ 𝐸 ) } ) ‘ 𝑄 ) = { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ 𝐸 ) } ) |
47 |
15 46
|
syl |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ∧ 𝑠 ∈ 𝐸 ) } ) ‘ 𝑄 ) = { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ 𝐸 ) } ) |
48 |
10 47
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) = { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ 𝐸 ) } ) |