Metamath Proof Explorer


Theorem dicval

Description: The partial isomorphism C for a lattice K . (Contributed by NM, 15-Dec-2013) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses dicval.l ˙ = K
dicval.a A = Atoms K
dicval.h H = LHyp K
dicval.p P = oc K W
dicval.t T = LTrn K W
dicval.e E = TEndo K W
dicval.i I = DIsoC K W
Assertion dicval K V W H Q A ¬ Q ˙ W I Q = f s | f = s ι g T | g P = Q s E

Proof

Step Hyp Ref Expression
1 dicval.l ˙ = K
2 dicval.a A = Atoms K
3 dicval.h H = LHyp K
4 dicval.p P = oc K W
5 dicval.t T = LTrn K W
6 dicval.e E = TEndo K W
7 dicval.i I = DIsoC K W
8 1 2 3 4 5 6 7 dicfval K V W H I = q r A | ¬ r ˙ W f s | f = s ι g T | g P = q s E
9 8 adantr K V W H Q A ¬ Q ˙ W I = q r A | ¬ r ˙ W f s | f = s ι g T | g P = q s E
10 9 fveq1d K V W H Q A ¬ Q ˙ W I Q = q r A | ¬ r ˙ W f s | f = s ι g T | g P = q s E Q
11 simpr K V W H Q A ¬ Q ˙ W Q A ¬ Q ˙ W
12 breq1 r = Q r ˙ W Q ˙ W
13 12 notbid r = Q ¬ r ˙ W ¬ Q ˙ W
14 13 elrab Q r A | ¬ r ˙ W Q A ¬ Q ˙ W
15 11 14 sylibr K V W H Q A ¬ Q ˙ W Q r A | ¬ r ˙ W
16 eqeq2 q = Q g P = q g P = Q
17 16 riotabidv q = Q ι g T | g P = q = ι g T | g P = Q
18 17 fveq2d q = Q s ι g T | g P = q = s ι g T | g P = Q
19 18 eqeq2d q = Q f = s ι g T | g P = q f = s ι g T | g P = Q
20 19 anbi1d q = Q f = s ι g T | g P = q s E f = s ι g T | g P = Q s E
21 20 opabbidv q = Q f s | f = s ι g T | g P = q s E = f s | f = s ι g T | g P = Q s E
22 eqid q r A | ¬ r ˙ W f s | f = s ι g T | g P = q s E = q r A | ¬ r ˙ W f s | f = s ι g T | g P = q s E
23 6 fvexi E V
24 23 uniex E V
25 24 rnex ran E V
26 25 uniex ran E V
27 26 pwex 𝒫 ran E V
28 27 23 xpex 𝒫 ran E × E V
29 simpl f = s ι g T | g P = Q s E f = s ι g T | g P = Q
30 fvssunirn s ι g T | g P = Q ran s
31 elssuni s E s E
32 31 adantl f = s ι g T | g P = Q s E s E
33 rnss s E ran s ran E
34 uniss ran s ran E ran s ran E
35 32 33 34 3syl f = s ι g T | g P = Q s E ran s ran E
36 30 35 sstrid f = s ι g T | g P = Q s E s ι g T | g P = Q ran E
37 26 elpw2 s ι g T | g P = Q 𝒫 ran E s ι g T | g P = Q ran E
38 36 37 sylibr f = s ι g T | g P = Q s E s ι g T | g P = Q 𝒫 ran E
39 29 38 eqeltrd f = s ι g T | g P = Q s E f 𝒫 ran E
40 simpr f = s ι g T | g P = Q s E s E
41 39 40 jca f = s ι g T | g P = Q s E f 𝒫 ran E s E
42 41 ssopab2i f s | f = s ι g T | g P = Q s E f s | f 𝒫 ran E s E
43 df-xp 𝒫 ran E × E = f s | f 𝒫 ran E s E
44 42 43 sseqtrri f s | f = s ι g T | g P = Q s E 𝒫 ran E × E
45 28 44 ssexi f s | f = s ι g T | g P = Q s E V
46 21 22 45 fvmpt Q r A | ¬ r ˙ W q r A | ¬ r ˙ W f s | f = s ι g T | g P = q s E Q = f s | f = s ι g T | g P = Q s E
47 15 46 syl K V W H Q A ¬ Q ˙ W q r A | ¬ r ˙ W f s | f = s ι g T | g P = q s E Q = f s | f = s ι g T | g P = Q s E
48 10 47 eqtrd K V W H Q A ¬ Q ˙ W I Q = f s | f = s ι g T | g P = Q s E