Metamath Proof Explorer


Theorem dicopelval

Description: Membership in value of the partial isomorphism C for a lattice K . (Contributed by NM, 15-Feb-2014)

Ref Expression
Hypotheses dicval.l ˙ = K
dicval.a A = Atoms K
dicval.h H = LHyp K
dicval.p P = oc K W
dicval.t T = LTrn K W
dicval.e E = TEndo K W
dicval.i I = DIsoC K W
dicelval.f F V
dicelval.s S V
Assertion dicopelval K V W H Q A ¬ Q ˙ W F S I Q F = S ι g T | g P = Q S E

Proof

Step Hyp Ref Expression
1 dicval.l ˙ = K
2 dicval.a A = Atoms K
3 dicval.h H = LHyp K
4 dicval.p P = oc K W
5 dicval.t T = LTrn K W
6 dicval.e E = TEndo K W
7 dicval.i I = DIsoC K W
8 dicelval.f F V
9 dicelval.s S V
10 1 2 3 4 5 6 7 dicval K V W H Q A ¬ Q ˙ W I Q = f s | f = s ι g T | g P = Q s E
11 10 eleq2d K V W H Q A ¬ Q ˙ W F S I Q F S f s | f = s ι g T | g P = Q s E
12 eqeq1 f = F f = s ι g T | g P = Q F = s ι g T | g P = Q
13 12 anbi1d f = F f = s ι g T | g P = Q s E F = s ι g T | g P = Q s E
14 fveq1 s = S s ι g T | g P = Q = S ι g T | g P = Q
15 14 eqeq2d s = S F = s ι g T | g P = Q F = S ι g T | g P = Q
16 eleq1 s = S s E S E
17 15 16 anbi12d s = S F = s ι g T | g P = Q s E F = S ι g T | g P = Q S E
18 8 9 13 17 opelopab F S f s | f = s ι g T | g P = Q s E F = S ι g T | g P = Q S E
19 11 18 bitrdi K V W H Q A ¬ Q ˙ W F S I Q F = S ι g T | g P = Q S E