Metamath Proof Explorer


Theorem dicopelval

Description: Membership in value of the partial isomorphism C for a lattice K . (Contributed by NM, 15-Feb-2014)

Ref Expression
Hypotheses dicval.l ˙=K
dicval.a A=AtomsK
dicval.h H=LHypK
dicval.p P=ocKW
dicval.t T=LTrnKW
dicval.e E=TEndoKW
dicval.i I=DIsoCKW
dicelval.f FV
dicelval.s SV
Assertion dicopelval KVWHQA¬Q˙WFSIQF=SιgT|gP=QSE

Proof

Step Hyp Ref Expression
1 dicval.l ˙=K
2 dicval.a A=AtomsK
3 dicval.h H=LHypK
4 dicval.p P=ocKW
5 dicval.t T=LTrnKW
6 dicval.e E=TEndoKW
7 dicval.i I=DIsoCKW
8 dicelval.f FV
9 dicelval.s SV
10 1 2 3 4 5 6 7 dicval KVWHQA¬Q˙WIQ=fs|f=sιgT|gP=QsE
11 10 eleq2d KVWHQA¬Q˙WFSIQFSfs|f=sιgT|gP=QsE
12 eqeq1 f=Ff=sιgT|gP=QF=sιgT|gP=Q
13 12 anbi1d f=Ff=sιgT|gP=QsEF=sιgT|gP=QsE
14 fveq1 s=SsιgT|gP=Q=SιgT|gP=Q
15 14 eqeq2d s=SF=sιgT|gP=QF=SιgT|gP=Q
16 eleq1 s=SsESE
17 15 16 anbi12d s=SF=sιgT|gP=QsEF=SιgT|gP=QSE
18 8 9 13 17 opelopab FSfs|f=sιgT|gP=QsEF=SιgT|gP=QSE
19 11 18 bitrdi KVWHQA¬Q˙WFSIQF=SιgT|gP=QSE