Step |
Hyp |
Ref |
Expression |
1 |
|
dicval.l |
|- .<_ = ( le ` K ) |
2 |
|
dicval.a |
|- A = ( Atoms ` K ) |
3 |
|
dicval.h |
|- H = ( LHyp ` K ) |
4 |
|
dicval.p |
|- P = ( ( oc ` K ) ` W ) |
5 |
|
dicval.t |
|- T = ( ( LTrn ` K ) ` W ) |
6 |
|
dicval.e |
|- E = ( ( TEndo ` K ) ` W ) |
7 |
|
dicval.i |
|- I = ( ( DIsoC ` K ) ` W ) |
8 |
|
dicelval.f |
|- F e. _V |
9 |
|
dicelval.s |
|- S e. _V |
10 |
1 2 3 4 5 6 7
|
dicval |
|- ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. E ) } ) |
11 |
10
|
eleq2d |
|- ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. F , S >. e. ( I ` Q ) <-> <. F , S >. e. { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. E ) } ) ) |
12 |
|
eqeq1 |
|- ( f = F -> ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) <-> F = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) ) ) |
13 |
12
|
anbi1d |
|- ( f = F -> ( ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. E ) <-> ( F = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. E ) ) ) |
14 |
|
fveq1 |
|- ( s = S -> ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) = ( S ` ( iota_ g e. T ( g ` P ) = Q ) ) ) |
15 |
14
|
eqeq2d |
|- ( s = S -> ( F = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) <-> F = ( S ` ( iota_ g e. T ( g ` P ) = Q ) ) ) ) |
16 |
|
eleq1 |
|- ( s = S -> ( s e. E <-> S e. E ) ) |
17 |
15 16
|
anbi12d |
|- ( s = S -> ( ( F = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. E ) <-> ( F = ( S ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ S e. E ) ) ) |
18 |
8 9 13 17
|
opelopab |
|- ( <. F , S >. e. { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. E ) } <-> ( F = ( S ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ S e. E ) ) |
19 |
11 18
|
bitrdi |
|- ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. F , S >. e. ( I ` Q ) <-> ( F = ( S ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ S e. E ) ) ) |