Metamath Proof Explorer


Theorem opelopab

Description: The law of concretion. Theorem 9.5 of Quine p. 61. (Contributed by NM, 16-May-1995)

Ref Expression
Hypotheses opelopab.1
|- A e. _V
opelopab.2
|- B e. _V
opelopab.3
|- ( x = A -> ( ph <-> ps ) )
opelopab.4
|- ( y = B -> ( ps <-> ch ) )
Assertion opelopab
|- ( <. A , B >. e. { <. x , y >. | ph } <-> ch )

Proof

Step Hyp Ref Expression
1 opelopab.1
 |-  A e. _V
2 opelopab.2
 |-  B e. _V
3 opelopab.3
 |-  ( x = A -> ( ph <-> ps ) )
4 opelopab.4
 |-  ( y = B -> ( ps <-> ch ) )
5 3 4 opelopabg
 |-  ( ( A e. _V /\ B e. _V ) -> ( <. A , B >. e. { <. x , y >. | ph } <-> ch ) )
6 1 2 5 mp2an
 |-  ( <. A , B >. e. { <. x , y >. | ph } <-> ch )