Metamath Proof Explorer


Theorem opelopabg

Description: The law of concretion. Theorem 9.5 of Quine p. 61. (Contributed by NM, 28-May-1995) (Revised by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses opelopabg.1
|- ( x = A -> ( ph <-> ps ) )
opelopabg.2
|- ( y = B -> ( ps <-> ch ) )
Assertion opelopabg
|- ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. { <. x , y >. | ph } <-> ch ) )

Proof

Step Hyp Ref Expression
1 opelopabg.1
 |-  ( x = A -> ( ph <-> ps ) )
2 opelopabg.2
 |-  ( y = B -> ( ps <-> ch ) )
3 1 2 sylan9bb
 |-  ( ( x = A /\ y = B ) -> ( ph <-> ch ) )
4 3 opelopabga
 |-  ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. { <. x , y >. | ph } <-> ch ) )