Description: The law of concretion. Theorem 9.5 of Quine p. 61. (Contributed by Mario Carneiro, 19-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opelopabga.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) )  | 
					|
| Assertion | opelopabga | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. { <. x , y >. | ph } <-> ps ) ) | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opelopabga.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) )  | 
						|
| 2 | elopab |  |-  ( <. A , B >. e. { <. x , y >. | ph } <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) ) | 
						|
| 3 | 1 | copsex2g | |- ( ( A e. V /\ B e. W ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) )  | 
						
| 4 | 2 3 | bitrid |  |-  ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. { <. x , y >. | ph } <-> ps ) ) |