Description: The law of concretion. Theorem 9.5 of Quine p. 61. (Contributed by NM, 28-May-1995) (Revised by Mario Carneiro, 19-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opelopabg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
opelopabg.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | opelopabg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | opelopabg.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
3 | 1 2 | sylan9bb | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜒 ) ) |
4 | 3 | opelopabga | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜒 ) ) |