Metamath Proof Explorer


Theorem opelopabg

Description: The law of concretion. Theorem 9.5 of Quine p. 61. (Contributed by NM, 28-May-1995) (Revised by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses opelopabg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
opelopabg.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
Assertion opelopabg ( ( 𝐴𝑉𝐵𝑊 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 opelopabg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 opelopabg.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
3 1 2 sylan9bb ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜒 ) )
4 3 opelopabga ( ( 𝐴𝑉𝐵𝑊 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ 𝜒 ) )