Description: The law of concretion. Theorem 9.5 of Quine p. 61. (Contributed by NM, 16-May-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opelopab.1 | ⊢ 𝐴 ∈ V | |
opelopab.2 | ⊢ 𝐵 ∈ V | ||
opelopab.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
opelopab.4 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | opelopab | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopab.1 | ⊢ 𝐴 ∈ V | |
2 | opelopab.2 | ⊢ 𝐵 ∈ V | |
3 | opelopab.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
4 | opelopab.4 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
5 | 3 4 | opelopabg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜒 ) ) |
6 | 1 2 5 | mp2an | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜒 ) |