Metamath Proof Explorer


Theorem opelopab

Description: The law of concretion. Theorem 9.5 of Quine p. 61. (Contributed by NM, 16-May-1995)

Ref Expression
Hypotheses opelopab.1 𝐴 ∈ V
opelopab.2 𝐵 ∈ V
opelopab.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
opelopab.4 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
Assertion opelopab ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ 𝜒 )

Proof

Step Hyp Ref Expression
1 opelopab.1 𝐴 ∈ V
2 opelopab.2 𝐵 ∈ V
3 opelopab.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
4 opelopab.4 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
5 3 4 opelopabg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ 𝜒 ) )
6 1 2 5 mp2an ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ 𝜒 )