| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dicval.l |
|- .<_ = ( le ` K ) |
| 2 |
|
dicval.a |
|- A = ( Atoms ` K ) |
| 3 |
|
dicval.h |
|- H = ( LHyp ` K ) |
| 4 |
|
dicval.p |
|- P = ( ( oc ` K ) ` W ) |
| 5 |
|
dicval.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 6 |
|
dicval.e |
|- E = ( ( TEndo ` K ) ` W ) |
| 7 |
|
dicval.i |
|- I = ( ( DIsoC ` K ) ` W ) |
| 8 |
1 2 3 4 5 6 7
|
dicval |
|- ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. E ) } ) |
| 9 |
8
|
eleq2d |
|- ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Y e. ( I ` Q ) <-> Y e. { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. E ) } ) ) |
| 10 |
|
vex |
|- f e. _V |
| 11 |
|
vex |
|- s e. _V |
| 12 |
10 11
|
op1std |
|- ( Y = <. f , s >. -> ( 1st ` Y ) = f ) |
| 13 |
10 11
|
op2ndd |
|- ( Y = <. f , s >. -> ( 2nd ` Y ) = s ) |
| 14 |
13
|
fveq1d |
|- ( Y = <. f , s >. -> ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) ) |
| 15 |
12 14
|
eqeq12d |
|- ( Y = <. f , s >. -> ( ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) <-> f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) ) ) |
| 16 |
13
|
eleq1d |
|- ( Y = <. f , s >. -> ( ( 2nd ` Y ) e. E <-> s e. E ) ) |
| 17 |
15 16
|
anbi12d |
|- ( Y = <. f , s >. -> ( ( ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ ( 2nd ` Y ) e. E ) <-> ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. E ) ) ) |
| 18 |
17
|
elopaba |
|- ( Y e. { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. E ) } <-> ( Y e. ( _V X. _V ) /\ ( ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ ( 2nd ` Y ) e. E ) ) ) |
| 19 |
9 18
|
bitrdi |
|- ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Y e. ( I ` Q ) <-> ( Y e. ( _V X. _V ) /\ ( ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ ( 2nd ` Y ) e. E ) ) ) ) |