Metamath Proof Explorer


Theorem elopaba

Description: Membership in an ordered-pair class abstraction. (Contributed by NM, 25-Feb-2014) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis copsex2ga.1
|- ( A = <. x , y >. -> ( ph <-> ps ) )
Assertion elopaba
|- ( A e. { <. x , y >. | ps } <-> ( A e. ( _V X. _V ) /\ ph ) )

Proof

Step Hyp Ref Expression
1 copsex2ga.1
 |-  ( A = <. x , y >. -> ( ph <-> ps ) )
2 elopab
 |-  ( A e. { <. x , y >. | ps } <-> E. x E. y ( A = <. x , y >. /\ ps ) )
3 1 copsex2gb
 |-  ( E. x E. y ( A = <. x , y >. /\ ps ) <-> ( A e. ( _V X. _V ) /\ ph ) )
4 2 3 bitri
 |-  ( A e. { <. x , y >. | ps } <-> ( A e. ( _V X. _V ) /\ ph ) )