Description: Membership in an ordered-pair class abstraction. (Contributed by NM, 25-Feb-2014) (Revised by Mario Carneiro, 31-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | copsex2ga.1 | ⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | elopaba | ⊢ ( 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ↔ ( 𝐴 ∈ ( V × V ) ∧ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | copsex2ga.1 | ⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | elopab | ⊢ ( 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ) | |
3 | 1 | copsex2gb | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ 𝜑 ) ) |
4 | 2 3 | bitri | ⊢ ( 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ↔ ( 𝐴 ∈ ( V × V ) ∧ 𝜑 ) ) |