Metamath Proof Explorer


Theorem elopaba

Description: Membership in an ordered-pair class abstraction. (Contributed by NM, 25-Feb-2014) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis copsex2ga.1 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝜑𝜓 ) )
Assertion elopaba ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ↔ ( 𝐴 ∈ ( V × V ) ∧ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 copsex2ga.1 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝜑𝜓 ) )
2 elopab ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) )
3 1 copsex2gb ( ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ 𝜑 ) )
4 2 3 bitri ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ↔ ( 𝐴 ∈ ( V × V ) ∧ 𝜑 ) )