Metamath Proof Explorer


Theorem dicelvalN

Description: Membership in value of the partial isomorphism C for a lattice K . (Contributed by NM, 25-Feb-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dicval.l = ( le ‘ 𝐾 )
dicval.a 𝐴 = ( Atoms ‘ 𝐾 )
dicval.h 𝐻 = ( LHyp ‘ 𝐾 )
dicval.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
dicval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dicval.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dicval.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
Assertion dicelvalN ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑌 ∈ ( 𝐼𝑄 ) ↔ ( 𝑌 ∈ ( V × V ) ∧ ( ( 1st𝑌 ) = ( ( 2nd𝑌 ) ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ ( 2nd𝑌 ) ∈ 𝐸 ) ) ) )

Proof

Step Hyp Ref Expression
1 dicval.l = ( le ‘ 𝐾 )
2 dicval.a 𝐴 = ( Atoms ‘ 𝐾 )
3 dicval.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dicval.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
5 dicval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 dicval.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
7 dicval.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
8 1 2 3 4 5 6 7 dicval ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) = { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) } )
9 8 eleq2d ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑌 ∈ ( 𝐼𝑄 ) ↔ 𝑌 ∈ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) } ) )
10 vex 𝑓 ∈ V
11 vex 𝑠 ∈ V
12 10 11 op1std ( 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ → ( 1st𝑌 ) = 𝑓 )
13 10 11 op2ndd ( 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ → ( 2nd𝑌 ) = 𝑠 )
14 13 fveq1d ( 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ → ( ( 2nd𝑌 ) ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) )
15 12 14 eqeq12d ( 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ → ( ( 1st𝑌 ) = ( ( 2nd𝑌 ) ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ↔ 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ) )
16 13 eleq1d ( 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ → ( ( 2nd𝑌 ) ∈ 𝐸𝑠𝐸 ) )
17 15 16 anbi12d ( 𝑌 = ⟨ 𝑓 , 𝑠 ⟩ → ( ( ( 1st𝑌 ) = ( ( 2nd𝑌 ) ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ ( 2nd𝑌 ) ∈ 𝐸 ) ↔ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) ) )
18 17 elopaba ( 𝑌 ∈ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) } ↔ ( 𝑌 ∈ ( V × V ) ∧ ( ( 1st𝑌 ) = ( ( 2nd𝑌 ) ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ ( 2nd𝑌 ) ∈ 𝐸 ) ) )
19 9 18 bitrdi ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑌 ∈ ( 𝐼𝑄 ) ↔ ( 𝑌 ∈ ( V × V ) ∧ ( ( 1st𝑌 ) = ( ( 2nd𝑌 ) ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ ( 2nd𝑌 ) ∈ 𝐸 ) ) ) )