Metamath Proof Explorer


Theorem dicval2

Description: The partial isomorphism C for a lattice K . (Contributed by NM, 20-Feb-2014)

Ref Expression
Hypotheses dicval.l = ( le ‘ 𝐾 )
dicval.a 𝐴 = ( Atoms ‘ 𝐾 )
dicval.h 𝐻 = ( LHyp ‘ 𝐾 )
dicval.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
dicval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dicval.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dicval.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
dicval2.g 𝐺 = ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 )
Assertion dicval2 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) = { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) } )

Proof

Step Hyp Ref Expression
1 dicval.l = ( le ‘ 𝐾 )
2 dicval.a 𝐴 = ( Atoms ‘ 𝐾 )
3 dicval.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dicval.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
5 dicval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 dicval.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
7 dicval.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
8 dicval2.g 𝐺 = ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 )
9 1 2 3 4 5 6 7 dicval ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) = { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) } )
10 8 fveq2i ( 𝑠𝐺 ) = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) )
11 10 eqeq2i ( 𝑓 = ( 𝑠𝐺 ) ↔ 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) )
12 11 anbi1i ( ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) ↔ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) )
13 12 opabbii { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) } = { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) }
14 9 13 eqtr4di ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) = { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠𝐺 ) ∧ 𝑠𝐸 ) } )