Metamath Proof Explorer


Theorem dicval2

Description: The partial isomorphism C for a lattice K . (Contributed by NM, 20-Feb-2014)

Ref Expression
Hypotheses dicval.l ˙=K
dicval.a A=AtomsK
dicval.h H=LHypK
dicval.p P=ocKW
dicval.t T=LTrnKW
dicval.e E=TEndoKW
dicval.i I=DIsoCKW
dicval2.g G=ιgT|gP=Q
Assertion dicval2 KVWHQA¬Q˙WIQ=fs|f=sGsE

Proof

Step Hyp Ref Expression
1 dicval.l ˙=K
2 dicval.a A=AtomsK
3 dicval.h H=LHypK
4 dicval.p P=ocKW
5 dicval.t T=LTrnKW
6 dicval.e E=TEndoKW
7 dicval.i I=DIsoCKW
8 dicval2.g G=ιgT|gP=Q
9 1 2 3 4 5 6 7 dicval KVWHQA¬Q˙WIQ=fs|f=sιgT|gP=QsE
10 8 fveq2i sG=sιgT|gP=Q
11 10 eqeq2i f=sGf=sιgT|gP=Q
12 11 anbi1i f=sGsEf=sιgT|gP=QsE
13 12 opabbii fs|f=sGsE=fs|f=sιgT|gP=QsE
14 9 13 eqtr4di KVWHQA¬Q˙WIQ=fs|f=sGsE