Metamath Proof Explorer


Theorem dicelval3

Description: Member of the partial isomorphism C. (Contributed by NM, 26-Feb-2014)

Ref Expression
Hypotheses dicval.l ˙=K
dicval.a A=AtomsK
dicval.h H=LHypK
dicval.p P=ocKW
dicval.t T=LTrnKW
dicval.e E=TEndoKW
dicval.i I=DIsoCKW
dicval2.g G=ιgT|gP=Q
Assertion dicelval3 KVWHQA¬Q˙WYIQsEY=sGs

Proof

Step Hyp Ref Expression
1 dicval.l ˙=K
2 dicval.a A=AtomsK
3 dicval.h H=LHypK
4 dicval.p P=ocKW
5 dicval.t T=LTrnKW
6 dicval.e E=TEndoKW
7 dicval.i I=DIsoCKW
8 dicval2.g G=ιgT|gP=Q
9 1 2 3 4 5 6 7 8 dicval2 KVWHQA¬Q˙WIQ=fs|f=sGsE
10 9 eleq2d KVWHQA¬Q˙WYIQYfs|f=sGsE
11 excom fsY=fsf=sGsEsfY=fsf=sGsE
12 an12 Y=fsf=sGsEf=sGY=fssE
13 12 exbii fY=fsf=sGsEff=sGY=fssE
14 fvex sGV
15 opeq1 f=sGfs=sGs
16 15 eqeq2d f=sGY=fsY=sGs
17 16 anbi1d f=sGY=fssEY=sGssE
18 14 17 ceqsexv ff=sGY=fssEY=sGssE
19 ancom Y=sGssEsEY=sGs
20 13 18 19 3bitri fY=fsf=sGsEsEY=sGs
21 20 exbii sfY=fsf=sGsEssEY=sGs
22 11 21 bitri fsY=fsf=sGsEssEY=sGs
23 elopab Yfs|f=sGsEfsY=fsf=sGsE
24 df-rex sEY=sGsssEY=sGs
25 22 23 24 3bitr4i Yfs|f=sGsEsEY=sGs
26 10 25 bitrdi KVWHQA¬Q˙WYIQsEY=sGs