Metamath Proof Explorer


Theorem dicelval3

Description: Member of the partial isomorphism C. (Contributed by NM, 26-Feb-2014)

Ref Expression
Hypotheses dicval.l ˙ = K
dicval.a A = Atoms K
dicval.h H = LHyp K
dicval.p P = oc K W
dicval.t T = LTrn K W
dicval.e E = TEndo K W
dicval.i I = DIsoC K W
dicval2.g G = ι g T | g P = Q
Assertion dicelval3 K V W H Q A ¬ Q ˙ W Y I Q s E Y = s G s

Proof

Step Hyp Ref Expression
1 dicval.l ˙ = K
2 dicval.a A = Atoms K
3 dicval.h H = LHyp K
4 dicval.p P = oc K W
5 dicval.t T = LTrn K W
6 dicval.e E = TEndo K W
7 dicval.i I = DIsoC K W
8 dicval2.g G = ι g T | g P = Q
9 1 2 3 4 5 6 7 8 dicval2 K V W H Q A ¬ Q ˙ W I Q = f s | f = s G s E
10 9 eleq2d K V W H Q A ¬ Q ˙ W Y I Q Y f s | f = s G s E
11 excom f s Y = f s f = s G s E s f Y = f s f = s G s E
12 an12 Y = f s f = s G s E f = s G Y = f s s E
13 12 exbii f Y = f s f = s G s E f f = s G Y = f s s E
14 fvex s G V
15 opeq1 f = s G f s = s G s
16 15 eqeq2d f = s G Y = f s Y = s G s
17 16 anbi1d f = s G Y = f s s E Y = s G s s E
18 14 17 ceqsexv f f = s G Y = f s s E Y = s G s s E
19 ancom Y = s G s s E s E Y = s G s
20 13 18 19 3bitri f Y = f s f = s G s E s E Y = s G s
21 20 exbii s f Y = f s f = s G s E s s E Y = s G s
22 11 21 bitri f s Y = f s f = s G s E s s E Y = s G s
23 elopab Y f s | f = s G s E f s Y = f s f = s G s E
24 df-rex s E Y = s G s s s E Y = s G s
25 22 23 24 3bitr4i Y f s | f = s G s E s E Y = s G s
26 10 25 bitrdi K V W H Q A ¬ Q ˙ W Y I Q s E Y = s G s