Metamath Proof Explorer


Theorem dicopelval2

Description: Membership in value of the partial isomorphism C for a lattice K . (Contributed by NM, 20-Feb-2014)

Ref Expression
Hypotheses dicval.l ˙ = K
dicval.a A = Atoms K
dicval.h H = LHyp K
dicval.p P = oc K W
dicval.t T = LTrn K W
dicval.e E = TEndo K W
dicval.i I = DIsoC K W
dicval2.g G = ι g T | g P = Q
dicelval2.f F V
dicelval2.s S V
Assertion dicopelval2 K V W H Q A ¬ Q ˙ W F S I Q F = S G S E

Proof

Step Hyp Ref Expression
1 dicval.l ˙ = K
2 dicval.a A = Atoms K
3 dicval.h H = LHyp K
4 dicval.p P = oc K W
5 dicval.t T = LTrn K W
6 dicval.e E = TEndo K W
7 dicval.i I = DIsoC K W
8 dicval2.g G = ι g T | g P = Q
9 dicelval2.f F V
10 dicelval2.s S V
11 1 2 3 4 5 6 7 9 10 dicopelval K V W H Q A ¬ Q ˙ W F S I Q F = S ι g T | g P = Q S E
12 8 fveq2i S G = S ι g T | g P = Q
13 12 eqeq2i F = S G F = S ι g T | g P = Q
14 13 anbi1i F = S G S E F = S ι g T | g P = Q S E
15 11 14 bitr4di K V W H Q A ¬ Q ˙ W F S I Q F = S G S E