Metamath Proof Explorer


Theorem dicopelval2

Description: Membership in value of the partial isomorphism C for a lattice K . (Contributed by NM, 20-Feb-2014)

Ref Expression
Hypotheses dicval.l ˙=K
dicval.a A=AtomsK
dicval.h H=LHypK
dicval.p P=ocKW
dicval.t T=LTrnKW
dicval.e E=TEndoKW
dicval.i I=DIsoCKW
dicval2.g G=ιgT|gP=Q
dicelval2.f FV
dicelval2.s SV
Assertion dicopelval2 KVWHQA¬Q˙WFSIQF=SGSE

Proof

Step Hyp Ref Expression
1 dicval.l ˙=K
2 dicval.a A=AtomsK
3 dicval.h H=LHypK
4 dicval.p P=ocKW
5 dicval.t T=LTrnKW
6 dicval.e E=TEndoKW
7 dicval.i I=DIsoCKW
8 dicval2.g G=ιgT|gP=Q
9 dicelval2.f FV
10 dicelval2.s SV
11 1 2 3 4 5 6 7 9 10 dicopelval KVWHQA¬Q˙WFSIQF=SιgT|gP=QSE
12 8 fveq2i SG=SιgT|gP=Q
13 12 eqeq2i F=SGF=SιgT|gP=Q
14 13 anbi1i F=SGSEF=SιgT|gP=QSE
15 11 14 bitr4di KVWHQA¬Q˙WFSIQF=SGSE