Metamath Proof Explorer


Theorem dicelval2N

Description: Membership in value of the partial isomorphism C for a lattice K . (Contributed by NM, 25-Feb-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dicval.l ˙ = K
dicval.a A = Atoms K
dicval.h H = LHyp K
dicval.p P = oc K W
dicval.t T = LTrn K W
dicval.e E = TEndo K W
dicval.i I = DIsoC K W
dicval2.g G = ι g T | g P = Q
Assertion dicelval2N K V W H Q A ¬ Q ˙ W Y I Q Y V × V 1 st Y = 2 nd Y G 2 nd Y E

Proof

Step Hyp Ref Expression
1 dicval.l ˙ = K
2 dicval.a A = Atoms K
3 dicval.h H = LHyp K
4 dicval.p P = oc K W
5 dicval.t T = LTrn K W
6 dicval.e E = TEndo K W
7 dicval.i I = DIsoC K W
8 dicval2.g G = ι g T | g P = Q
9 1 2 3 4 5 6 7 dicelvalN K V W H Q A ¬ Q ˙ W Y I Q Y V × V 1 st Y = 2 nd Y ι g T | g P = Q 2 nd Y E
10 8 fveq2i 2 nd Y G = 2 nd Y ι g T | g P = Q
11 10 eqeq2i 1 st Y = 2 nd Y G 1 st Y = 2 nd Y ι g T | g P = Q
12 11 anbi1i 1 st Y = 2 nd Y G 2 nd Y E 1 st Y = 2 nd Y ι g T | g P = Q 2 nd Y E
13 12 anbi2i Y V × V 1 st Y = 2 nd Y G 2 nd Y E Y V × V 1 st Y = 2 nd Y ι g T | g P = Q 2 nd Y E
14 9 13 bitr4di K V W H Q A ¬ Q ˙ W Y I Q Y V × V 1 st Y = 2 nd Y G 2 nd Y E