Metamath Proof Explorer


Theorem dicelvalN

Description: Membership in value of the partial isomorphism C for a lattice K . (Contributed by NM, 25-Feb-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dicval.l ˙ = K
dicval.a A = Atoms K
dicval.h H = LHyp K
dicval.p P = oc K W
dicval.t T = LTrn K W
dicval.e E = TEndo K W
dicval.i I = DIsoC K W
Assertion dicelvalN K V W H Q A ¬ Q ˙ W Y I Q Y V × V 1 st Y = 2 nd Y ι g T | g P = Q 2 nd Y E

Proof

Step Hyp Ref Expression
1 dicval.l ˙ = K
2 dicval.a A = Atoms K
3 dicval.h H = LHyp K
4 dicval.p P = oc K W
5 dicval.t T = LTrn K W
6 dicval.e E = TEndo K W
7 dicval.i I = DIsoC K W
8 1 2 3 4 5 6 7 dicval K V W H Q A ¬ Q ˙ W I Q = f s | f = s ι g T | g P = Q s E
9 8 eleq2d K V W H Q A ¬ Q ˙ W Y I Q Y f s | f = s ι g T | g P = Q s E
10 vex f V
11 vex s V
12 10 11 op1std Y = f s 1 st Y = f
13 10 11 op2ndd Y = f s 2 nd Y = s
14 13 fveq1d Y = f s 2 nd Y ι g T | g P = Q = s ι g T | g P = Q
15 12 14 eqeq12d Y = f s 1 st Y = 2 nd Y ι g T | g P = Q f = s ι g T | g P = Q
16 13 eleq1d Y = f s 2 nd Y E s E
17 15 16 anbi12d Y = f s 1 st Y = 2 nd Y ι g T | g P = Q 2 nd Y E f = s ι g T | g P = Q s E
18 17 elopaba Y f s | f = s ι g T | g P = Q s E Y V × V 1 st Y = 2 nd Y ι g T | g P = Q 2 nd Y E
19 9 18 bitrdi K V W H Q A ¬ Q ˙ W Y I Q Y V × V 1 st Y = 2 nd Y ι g T | g P = Q 2 nd Y E