Metamath Proof Explorer


Theorem dicelvalN

Description: Membership in value of the partial isomorphism C for a lattice K . (Contributed by NM, 25-Feb-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dicval.l ˙=K
dicval.a A=AtomsK
dicval.h H=LHypK
dicval.p P=ocKW
dicval.t T=LTrnKW
dicval.e E=TEndoKW
dicval.i I=DIsoCKW
Assertion dicelvalN KVWHQA¬Q˙WYIQYV×V1stY=2ndYιgT|gP=Q2ndYE

Proof

Step Hyp Ref Expression
1 dicval.l ˙=K
2 dicval.a A=AtomsK
3 dicval.h H=LHypK
4 dicval.p P=ocKW
5 dicval.t T=LTrnKW
6 dicval.e E=TEndoKW
7 dicval.i I=DIsoCKW
8 1 2 3 4 5 6 7 dicval KVWHQA¬Q˙WIQ=fs|f=sιgT|gP=QsE
9 8 eleq2d KVWHQA¬Q˙WYIQYfs|f=sιgT|gP=QsE
10 vex fV
11 vex sV
12 10 11 op1std Y=fs1stY=f
13 10 11 op2ndd Y=fs2ndY=s
14 13 fveq1d Y=fs2ndYιgT|gP=Q=sιgT|gP=Q
15 12 14 eqeq12d Y=fs1stY=2ndYιgT|gP=Qf=sιgT|gP=Q
16 13 eleq1d Y=fs2ndYEsE
17 15 16 anbi12d Y=fs1stY=2ndYιgT|gP=Q2ndYEf=sιgT|gP=QsE
18 17 elopaba Yfs|f=sιgT|gP=QsEYV×V1stY=2ndYιgT|gP=Q2ndYE
19 9 18 bitrdi KVWHQA¬Q˙WYIQYV×V1stY=2ndYιgT|gP=Q2ndYE