Step |
Hyp |
Ref |
Expression |
1 |
|
dicval.l |
|- .<_ = ( le ` K ) |
2 |
|
dicval.a |
|- A = ( Atoms ` K ) |
3 |
|
dicval.h |
|- H = ( LHyp ` K ) |
4 |
|
dicval.p |
|- P = ( ( oc ` K ) ` W ) |
5 |
|
dicval.t |
|- T = ( ( LTrn ` K ) ` W ) |
6 |
|
dicval.e |
|- E = ( ( TEndo ` K ) ` W ) |
7 |
|
dicval.i |
|- I = ( ( DIsoC ` K ) ` W ) |
8 |
|
dicval2.g |
|- G = ( iota_ g e. T ( g ` P ) = Q ) |
9 |
1 2 3 4 5 6 7 8
|
dicval2 |
|- ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = { <. f , s >. | ( f = ( s ` G ) /\ s e. E ) } ) |
10 |
9
|
eleq2d |
|- ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Y e. ( I ` Q ) <-> Y e. { <. f , s >. | ( f = ( s ` G ) /\ s e. E ) } ) ) |
11 |
|
excom |
|- ( E. f E. s ( Y = <. f , s >. /\ ( f = ( s ` G ) /\ s e. E ) ) <-> E. s E. f ( Y = <. f , s >. /\ ( f = ( s ` G ) /\ s e. E ) ) ) |
12 |
|
an12 |
|- ( ( Y = <. f , s >. /\ ( f = ( s ` G ) /\ s e. E ) ) <-> ( f = ( s ` G ) /\ ( Y = <. f , s >. /\ s e. E ) ) ) |
13 |
12
|
exbii |
|- ( E. f ( Y = <. f , s >. /\ ( f = ( s ` G ) /\ s e. E ) ) <-> E. f ( f = ( s ` G ) /\ ( Y = <. f , s >. /\ s e. E ) ) ) |
14 |
|
fvex |
|- ( s ` G ) e. _V |
15 |
|
opeq1 |
|- ( f = ( s ` G ) -> <. f , s >. = <. ( s ` G ) , s >. ) |
16 |
15
|
eqeq2d |
|- ( f = ( s ` G ) -> ( Y = <. f , s >. <-> Y = <. ( s ` G ) , s >. ) ) |
17 |
16
|
anbi1d |
|- ( f = ( s ` G ) -> ( ( Y = <. f , s >. /\ s e. E ) <-> ( Y = <. ( s ` G ) , s >. /\ s e. E ) ) ) |
18 |
14 17
|
ceqsexv |
|- ( E. f ( f = ( s ` G ) /\ ( Y = <. f , s >. /\ s e. E ) ) <-> ( Y = <. ( s ` G ) , s >. /\ s e. E ) ) |
19 |
|
ancom |
|- ( ( Y = <. ( s ` G ) , s >. /\ s e. E ) <-> ( s e. E /\ Y = <. ( s ` G ) , s >. ) ) |
20 |
13 18 19
|
3bitri |
|- ( E. f ( Y = <. f , s >. /\ ( f = ( s ` G ) /\ s e. E ) ) <-> ( s e. E /\ Y = <. ( s ` G ) , s >. ) ) |
21 |
20
|
exbii |
|- ( E. s E. f ( Y = <. f , s >. /\ ( f = ( s ` G ) /\ s e. E ) ) <-> E. s ( s e. E /\ Y = <. ( s ` G ) , s >. ) ) |
22 |
11 21
|
bitri |
|- ( E. f E. s ( Y = <. f , s >. /\ ( f = ( s ` G ) /\ s e. E ) ) <-> E. s ( s e. E /\ Y = <. ( s ` G ) , s >. ) ) |
23 |
|
elopab |
|- ( Y e. { <. f , s >. | ( f = ( s ` G ) /\ s e. E ) } <-> E. f E. s ( Y = <. f , s >. /\ ( f = ( s ` G ) /\ s e. E ) ) ) |
24 |
|
df-rex |
|- ( E. s e. E Y = <. ( s ` G ) , s >. <-> E. s ( s e. E /\ Y = <. ( s ` G ) , s >. ) ) |
25 |
22 23 24
|
3bitr4i |
|- ( Y e. { <. f , s >. | ( f = ( s ` G ) /\ s e. E ) } <-> E. s e. E Y = <. ( s ` G ) , s >. ) |
26 |
10 25
|
bitrdi |
|- ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Y e. ( I ` Q ) <-> E. s e. E Y = <. ( s ` G ) , s >. ) ) |