Metamath Proof Explorer


Theorem dicelval3

Description: Member of the partial isomorphism C. (Contributed by NM, 26-Feb-2014)

Ref Expression
Hypotheses dicval.l
|- .<_ = ( le ` K )
dicval.a
|- A = ( Atoms ` K )
dicval.h
|- H = ( LHyp ` K )
dicval.p
|- P = ( ( oc ` K ) ` W )
dicval.t
|- T = ( ( LTrn ` K ) ` W )
dicval.e
|- E = ( ( TEndo ` K ) ` W )
dicval.i
|- I = ( ( DIsoC ` K ) ` W )
dicval2.g
|- G = ( iota_ g e. T ( g ` P ) = Q )
Assertion dicelval3
|- ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Y e. ( I ` Q ) <-> E. s e. E Y = <. ( s ` G ) , s >. ) )

Proof

Step Hyp Ref Expression
1 dicval.l
 |-  .<_ = ( le ` K )
2 dicval.a
 |-  A = ( Atoms ` K )
3 dicval.h
 |-  H = ( LHyp ` K )
4 dicval.p
 |-  P = ( ( oc ` K ) ` W )
5 dicval.t
 |-  T = ( ( LTrn ` K ) ` W )
6 dicval.e
 |-  E = ( ( TEndo ` K ) ` W )
7 dicval.i
 |-  I = ( ( DIsoC ` K ) ` W )
8 dicval2.g
 |-  G = ( iota_ g e. T ( g ` P ) = Q )
9 1 2 3 4 5 6 7 8 dicval2
 |-  ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = { <. f , s >. | ( f = ( s ` G ) /\ s e. E ) } )
10 9 eleq2d
 |-  ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Y e. ( I ` Q ) <-> Y e. { <. f , s >. | ( f = ( s ` G ) /\ s e. E ) } ) )
11 excom
 |-  ( E. f E. s ( Y = <. f , s >. /\ ( f = ( s ` G ) /\ s e. E ) ) <-> E. s E. f ( Y = <. f , s >. /\ ( f = ( s ` G ) /\ s e. E ) ) )
12 an12
 |-  ( ( Y = <. f , s >. /\ ( f = ( s ` G ) /\ s e. E ) ) <-> ( f = ( s ` G ) /\ ( Y = <. f , s >. /\ s e. E ) ) )
13 12 exbii
 |-  ( E. f ( Y = <. f , s >. /\ ( f = ( s ` G ) /\ s e. E ) ) <-> E. f ( f = ( s ` G ) /\ ( Y = <. f , s >. /\ s e. E ) ) )
14 fvex
 |-  ( s ` G ) e. _V
15 opeq1
 |-  ( f = ( s ` G ) -> <. f , s >. = <. ( s ` G ) , s >. )
16 15 eqeq2d
 |-  ( f = ( s ` G ) -> ( Y = <. f , s >. <-> Y = <. ( s ` G ) , s >. ) )
17 16 anbi1d
 |-  ( f = ( s ` G ) -> ( ( Y = <. f , s >. /\ s e. E ) <-> ( Y = <. ( s ` G ) , s >. /\ s e. E ) ) )
18 14 17 ceqsexv
 |-  ( E. f ( f = ( s ` G ) /\ ( Y = <. f , s >. /\ s e. E ) ) <-> ( Y = <. ( s ` G ) , s >. /\ s e. E ) )
19 ancom
 |-  ( ( Y = <. ( s ` G ) , s >. /\ s e. E ) <-> ( s e. E /\ Y = <. ( s ` G ) , s >. ) )
20 13 18 19 3bitri
 |-  ( E. f ( Y = <. f , s >. /\ ( f = ( s ` G ) /\ s e. E ) ) <-> ( s e. E /\ Y = <. ( s ` G ) , s >. ) )
21 20 exbii
 |-  ( E. s E. f ( Y = <. f , s >. /\ ( f = ( s ` G ) /\ s e. E ) ) <-> E. s ( s e. E /\ Y = <. ( s ` G ) , s >. ) )
22 11 21 bitri
 |-  ( E. f E. s ( Y = <. f , s >. /\ ( f = ( s ` G ) /\ s e. E ) ) <-> E. s ( s e. E /\ Y = <. ( s ` G ) , s >. ) )
23 elopab
 |-  ( Y e. { <. f , s >. | ( f = ( s ` G ) /\ s e. E ) } <-> E. f E. s ( Y = <. f , s >. /\ ( f = ( s ` G ) /\ s e. E ) ) )
24 df-rex
 |-  ( E. s e. E Y = <. ( s ` G ) , s >. <-> E. s ( s e. E /\ Y = <. ( s ` G ) , s >. ) )
25 22 23 24 3bitr4i
 |-  ( Y e. { <. f , s >. | ( f = ( s ` G ) /\ s e. E ) } <-> E. s e. E Y = <. ( s ` G ) , s >. )
26 10 25 bitrdi
 |-  ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Y e. ( I ` Q ) <-> E. s e. E Y = <. ( s ` G ) , s >. ) )