Metamath Proof Explorer


Theorem dicopelval

Description: Membership in value of the partial isomorphism C for a lattice K . (Contributed by NM, 15-Feb-2014)

Ref Expression
Hypotheses dicval.l = ( le ‘ 𝐾 )
dicval.a 𝐴 = ( Atoms ‘ 𝐾 )
dicval.h 𝐻 = ( LHyp ‘ 𝐾 )
dicval.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
dicval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dicval.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dicval.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
dicelval.f 𝐹 ∈ V
dicelval.s 𝑆 ∈ V
Assertion dicopelval ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ⟨ 𝐹 , 𝑆 ⟩ ∈ ( 𝐼𝑄 ) ↔ ( 𝐹 = ( 𝑆 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑆𝐸 ) ) )

Proof

Step Hyp Ref Expression
1 dicval.l = ( le ‘ 𝐾 )
2 dicval.a 𝐴 = ( Atoms ‘ 𝐾 )
3 dicval.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dicval.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
5 dicval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 dicval.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
7 dicval.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
8 dicelval.f 𝐹 ∈ V
9 dicelval.s 𝑆 ∈ V
10 1 2 3 4 5 6 7 dicval ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) = { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) } )
11 10 eleq2d ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ⟨ 𝐹 , 𝑆 ⟩ ∈ ( 𝐼𝑄 ) ↔ ⟨ 𝐹 , 𝑆 ⟩ ∈ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) } ) )
12 eqeq1 ( 𝑓 = 𝐹 → ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ↔ 𝐹 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ) )
13 12 anbi1d ( 𝑓 = 𝐹 → ( ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) ↔ ( 𝐹 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) ) )
14 fveq1 ( 𝑠 = 𝑆 → ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) = ( 𝑆 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) )
15 14 eqeq2d ( 𝑠 = 𝑆 → ( 𝐹 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ↔ 𝐹 = ( 𝑆 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ) )
16 eleq1 ( 𝑠 = 𝑆 → ( 𝑠𝐸𝑆𝐸 ) )
17 15 16 anbi12d ( 𝑠 = 𝑆 → ( ( 𝐹 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) ↔ ( 𝐹 = ( 𝑆 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑆𝐸 ) ) )
18 8 9 13 17 opelopab ( ⟨ 𝐹 , 𝑆 ⟩ ∈ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠𝐸 ) } ↔ ( 𝐹 = ( 𝑆 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑆𝐸 ) )
19 11 18 bitrdi ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ⟨ 𝐹 , 𝑆 ⟩ ∈ ( 𝐼𝑄 ) ↔ ( 𝐹 = ( 𝑆 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑆𝐸 ) ) )