Metamath Proof Explorer


Theorem dicfval

Description: The partial isomorphism C for a lattice K . (Contributed by NM, 15-Dec-2013)

Ref Expression
Hypotheses dicval.l ˙ = K
dicval.a A = Atoms K
dicval.h H = LHyp K
dicval.p P = oc K W
dicval.t T = LTrn K W
dicval.e E = TEndo K W
dicval.i I = DIsoC K W
Assertion dicfval K V W H I = q r A | ¬ r ˙ W f s | f = s ι g T | g P = q s E

Proof

Step Hyp Ref Expression
1 dicval.l ˙ = K
2 dicval.a A = Atoms K
3 dicval.h H = LHyp K
4 dicval.p P = oc K W
5 dicval.t T = LTrn K W
6 dicval.e E = TEndo K W
7 dicval.i I = DIsoC K W
8 1 2 3 dicffval K V DIsoC K = w H q r A | ¬ r ˙ w f s | f = s ι g LTrn K w | g oc K w = q s TEndo K w
9 8 fveq1d K V DIsoC K W = w H q r A | ¬ r ˙ w f s | f = s ι g LTrn K w | g oc K w = q s TEndo K w W
10 7 9 syl5eq K V I = w H q r A | ¬ r ˙ w f s | f = s ι g LTrn K w | g oc K w = q s TEndo K w W
11 breq2 w = W r ˙ w r ˙ W
12 11 notbid w = W ¬ r ˙ w ¬ r ˙ W
13 12 rabbidv w = W r A | ¬ r ˙ w = r A | ¬ r ˙ W
14 fveq2 w = W LTrn K w = LTrn K W
15 14 5 eqtr4di w = W LTrn K w = T
16 fveq2 w = W oc K w = oc K W
17 16 4 eqtr4di w = W oc K w = P
18 17 fveqeq2d w = W g oc K w = q g P = q
19 15 18 riotaeqbidv w = W ι g LTrn K w | g oc K w = q = ι g T | g P = q
20 19 fveq2d w = W s ι g LTrn K w | g oc K w = q = s ι g T | g P = q
21 20 eqeq2d w = W f = s ι g LTrn K w | g oc K w = q f = s ι g T | g P = q
22 fveq2 w = W TEndo K w = TEndo K W
23 22 6 eqtr4di w = W TEndo K w = E
24 23 eleq2d w = W s TEndo K w s E
25 21 24 anbi12d w = W f = s ι g LTrn K w | g oc K w = q s TEndo K w f = s ι g T | g P = q s E
26 25 opabbidv w = W f s | f = s ι g LTrn K w | g oc K w = q s TEndo K w = f s | f = s ι g T | g P = q s E
27 13 26 mpteq12dv w = W q r A | ¬ r ˙ w f s | f = s ι g LTrn K w | g oc K w = q s TEndo K w = q r A | ¬ r ˙ W f s | f = s ι g T | g P = q s E
28 eqid w H q r A | ¬ r ˙ w f s | f = s ι g LTrn K w | g oc K w = q s TEndo K w = w H q r A | ¬ r ˙ w f s | f = s ι g LTrn K w | g oc K w = q s TEndo K w
29 2 fvexi A V
30 29 mptrabex q r A | ¬ r ˙ W f s | f = s ι g T | g P = q s E V
31 27 28 30 fvmpt W H w H q r A | ¬ r ˙ w f s | f = s ι g LTrn K w | g oc K w = q s TEndo K w W = q r A | ¬ r ˙ W f s | f = s ι g T | g P = q s E
32 10 31 sylan9eq K V W H I = q r A | ¬ r ˙ W f s | f = s ι g T | g P = q s E