Metamath Proof Explorer


Theorem dicfval

Description: The partial isomorphism C for a lattice K . (Contributed by NM, 15-Dec-2013)

Ref Expression
Hypotheses dicval.l ˙=K
dicval.a A=AtomsK
dicval.h H=LHypK
dicval.p P=ocKW
dicval.t T=LTrnKW
dicval.e E=TEndoKW
dicval.i I=DIsoCKW
Assertion dicfval KVWHI=qrA|¬r˙Wfs|f=sιgT|gP=qsE

Proof

Step Hyp Ref Expression
1 dicval.l ˙=K
2 dicval.a A=AtomsK
3 dicval.h H=LHypK
4 dicval.p P=ocKW
5 dicval.t T=LTrnKW
6 dicval.e E=TEndoKW
7 dicval.i I=DIsoCKW
8 1 2 3 dicffval KVDIsoCK=wHqrA|¬r˙wfs|f=sιgLTrnKw|gocKw=qsTEndoKw
9 8 fveq1d KVDIsoCKW=wHqrA|¬r˙wfs|f=sιgLTrnKw|gocKw=qsTEndoKwW
10 7 9 eqtrid KVI=wHqrA|¬r˙wfs|f=sιgLTrnKw|gocKw=qsTEndoKwW
11 breq2 w=Wr˙wr˙W
12 11 notbid w=W¬r˙w¬r˙W
13 12 rabbidv w=WrA|¬r˙w=rA|¬r˙W
14 fveq2 w=WLTrnKw=LTrnKW
15 14 5 eqtr4di w=WLTrnKw=T
16 fveq2 w=WocKw=ocKW
17 16 4 eqtr4di w=WocKw=P
18 17 fveqeq2d w=WgocKw=qgP=q
19 15 18 riotaeqbidv w=WιgLTrnKw|gocKw=q=ιgT|gP=q
20 19 fveq2d w=WsιgLTrnKw|gocKw=q=sιgT|gP=q
21 20 eqeq2d w=Wf=sιgLTrnKw|gocKw=qf=sιgT|gP=q
22 fveq2 w=WTEndoKw=TEndoKW
23 22 6 eqtr4di w=WTEndoKw=E
24 23 eleq2d w=WsTEndoKwsE
25 21 24 anbi12d w=Wf=sιgLTrnKw|gocKw=qsTEndoKwf=sιgT|gP=qsE
26 25 opabbidv w=Wfs|f=sιgLTrnKw|gocKw=qsTEndoKw=fs|f=sιgT|gP=qsE
27 13 26 mpteq12dv w=WqrA|¬r˙wfs|f=sιgLTrnKw|gocKw=qsTEndoKw=qrA|¬r˙Wfs|f=sιgT|gP=qsE
28 eqid wHqrA|¬r˙wfs|f=sιgLTrnKw|gocKw=qsTEndoKw=wHqrA|¬r˙wfs|f=sιgLTrnKw|gocKw=qsTEndoKw
29 2 fvexi AV
30 29 mptrabex qrA|¬r˙Wfs|f=sιgT|gP=qsEV
31 27 28 30 fvmpt WHwHqrA|¬r˙wfs|f=sιgLTrnKw|gocKw=qsTEndoKwW=qrA|¬r˙Wfs|f=sιgT|gP=qsE
32 10 31 sylan9eq KVWHI=qrA|¬r˙Wfs|f=sιgT|gP=qsE