Step |
Hyp |
Ref |
Expression |
1 |
|
dicval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
dicval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
dicval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dicval.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dicval.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
dicval.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
dicval.i |
⊢ 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
1 2 3
|
dicffval |
⊢ ( 𝐾 ∈ 𝑉 → ( DIsoC ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) } ) ) ) |
9 |
8
|
fveq1d |
⊢ ( 𝐾 ∈ 𝑉 → ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) = ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) } ) ) ‘ 𝑊 ) ) |
10 |
7 9
|
syl5eq |
⊢ ( 𝐾 ∈ 𝑉 → 𝐼 = ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) } ) ) ‘ 𝑊 ) ) |
11 |
|
breq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝑟 ≤ 𝑤 ↔ 𝑟 ≤ 𝑊 ) ) |
12 |
11
|
notbid |
⊢ ( 𝑤 = 𝑊 → ( ¬ 𝑟 ≤ 𝑤 ↔ ¬ 𝑟 ≤ 𝑊 ) ) |
13 |
12
|
rabbidv |
⊢ ( 𝑤 = 𝑊 → { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤 } = { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊 } ) |
14 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
15 |
14 5
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = 𝑇 ) |
16 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) |
17 |
16 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) = 𝑃 ) |
18 |
17
|
fveqeq2d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ↔ ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) |
19 |
15 18
|
riotaeqbidv |
⊢ ( 𝑤 = 𝑊 → ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) = ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ) |
21 |
20
|
eqeq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ↔ 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ) ) |
22 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
23 |
22 6
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) = 𝐸 ) |
24 |
23
|
eleq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ↔ 𝑠 ∈ 𝐸 ) ) |
25 |
21 24
|
anbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↔ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ∧ 𝑠 ∈ 𝐸 ) ) ) |
26 |
25
|
opabbidv |
⊢ ( 𝑤 = 𝑊 → { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) } = { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ∧ 𝑠 ∈ 𝐸 ) } ) |
27 |
13 26
|
mpteq12dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) } ) = ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ∧ 𝑠 ∈ 𝐸 ) } ) ) |
28 |
|
eqid |
⊢ ( 𝑤 ∈ 𝐻 ↦ ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) } ) ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) } ) ) |
29 |
2
|
fvexi |
⊢ 𝐴 ∈ V |
30 |
29
|
mptrabex |
⊢ ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ∧ 𝑠 ∈ 𝐸 ) } ) ∈ V |
31 |
27 28 30
|
fvmpt |
⊢ ( 𝑊 ∈ 𝐻 → ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) } ) ) ‘ 𝑊 ) = ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ∧ 𝑠 ∈ 𝐸 ) } ) ) |
32 |
10 31
|
sylan9eq |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐼 = ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑞 ) ) ∧ 𝑠 ∈ 𝐸 ) } ) ) |