| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dicval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
dicval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 3 |
|
dicval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
elex |
⊢ ( 𝐾 ∈ 𝑉 → 𝐾 ∈ V ) |
| 5 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = ( LHyp ‘ 𝐾 ) ) |
| 6 |
5 3
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = 𝐻 ) |
| 7 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) |
| 8 |
7 2
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
| 9 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) ) |
| 10 |
9 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ≤ ) |
| 11 |
10
|
breqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑟 ( le ‘ 𝑘 ) 𝑤 ↔ 𝑟 ≤ 𝑤 ) ) |
| 12 |
11
|
notbid |
⊢ ( 𝑘 = 𝐾 → ( ¬ 𝑟 ( le ‘ 𝑘 ) 𝑤 ↔ ¬ 𝑟 ≤ 𝑤 ) ) |
| 13 |
8 12
|
rabeqbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑟 ∈ ( Atoms ‘ 𝑘 ) ∣ ¬ 𝑟 ( le ‘ 𝑘 ) 𝑤 } = { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤 } ) |
| 14 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LTrn ‘ 𝑘 ) = ( LTrn ‘ 𝐾 ) ) |
| 15 |
14
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( oc ‘ 𝑘 ) = ( oc ‘ 𝐾 ) ) |
| 17 |
16
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) |
| 18 |
17
|
fveqeq2d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ↔ ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) |
| 19 |
15 18
|
riotaeqbidv |
⊢ ( 𝑘 = 𝐾 → ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) = ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) |
| 20 |
19
|
fveq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ) |
| 21 |
20
|
eqeq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ↔ 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( TEndo ‘ 𝑘 ) = ( TEndo ‘ 𝐾 ) ) |
| 23 |
22
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) |
| 24 |
23
|
eleq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ↔ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ) |
| 25 |
21 24
|
anbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) ↔ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ) ) |
| 26 |
25
|
opabbidv |
⊢ ( 𝑘 = 𝐾 → { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) } = { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) } ) |
| 27 |
13 26
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑞 ∈ { 𝑟 ∈ ( Atoms ‘ 𝑘 ) ∣ ¬ 𝑟 ( le ‘ 𝑘 ) 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) } ) = ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) } ) ) |
| 28 |
6 27
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑞 ∈ { 𝑟 ∈ ( Atoms ‘ 𝑘 ) ∣ ¬ 𝑟 ( le ‘ 𝑘 ) 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) } ) ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) } ) ) ) |
| 29 |
|
df-dic |
⊢ DIsoC = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑞 ∈ { 𝑟 ∈ ( Atoms ‘ 𝑘 ) ∣ ¬ 𝑟 ( le ‘ 𝑘 ) 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) } ) ) ) |
| 30 |
28 29 3
|
mptfvmpt |
⊢ ( 𝐾 ∈ V → ( DIsoC ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) } ) ) ) |
| 31 |
4 30
|
syl |
⊢ ( 𝐾 ∈ 𝑉 → ( DIsoC ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑞 ∈ { 𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) } ) ) ) |