Step |
Hyp |
Ref |
Expression |
0 |
|
cdic |
⊢ DIsoC |
1 |
|
vk |
⊢ 𝑘 |
2 |
|
cvv |
⊢ V |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
clh |
⊢ LHyp |
5 |
1
|
cv |
⊢ 𝑘 |
6 |
5 4
|
cfv |
⊢ ( LHyp ‘ 𝑘 ) |
7 |
|
vq |
⊢ 𝑞 |
8 |
|
vr |
⊢ 𝑟 |
9 |
|
catm |
⊢ Atoms |
10 |
5 9
|
cfv |
⊢ ( Atoms ‘ 𝑘 ) |
11 |
8
|
cv |
⊢ 𝑟 |
12 |
|
cple |
⊢ le |
13 |
5 12
|
cfv |
⊢ ( le ‘ 𝑘 ) |
14 |
3
|
cv |
⊢ 𝑤 |
15 |
11 14 13
|
wbr |
⊢ 𝑟 ( le ‘ 𝑘 ) 𝑤 |
16 |
15
|
wn |
⊢ ¬ 𝑟 ( le ‘ 𝑘 ) 𝑤 |
17 |
16 8 10
|
crab |
⊢ { 𝑟 ∈ ( Atoms ‘ 𝑘 ) ∣ ¬ 𝑟 ( le ‘ 𝑘 ) 𝑤 } |
18 |
|
vf |
⊢ 𝑓 |
19 |
|
vs |
⊢ 𝑠 |
20 |
18
|
cv |
⊢ 𝑓 |
21 |
19
|
cv |
⊢ 𝑠 |
22 |
|
vg |
⊢ 𝑔 |
23 |
|
cltrn |
⊢ LTrn |
24 |
5 23
|
cfv |
⊢ ( LTrn ‘ 𝑘 ) |
25 |
14 24
|
cfv |
⊢ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) |
26 |
22
|
cv |
⊢ 𝑔 |
27 |
|
coc |
⊢ oc |
28 |
5 27
|
cfv |
⊢ ( oc ‘ 𝑘 ) |
29 |
14 28
|
cfv |
⊢ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) |
30 |
29 26
|
cfv |
⊢ ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) |
31 |
7
|
cv |
⊢ 𝑞 |
32 |
30 31
|
wceq |
⊢ ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 |
33 |
32 22 25
|
crio |
⊢ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) |
34 |
33 21
|
cfv |
⊢ ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) |
35 |
20 34
|
wceq |
⊢ 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) |
36 |
|
ctendo |
⊢ TEndo |
37 |
5 36
|
cfv |
⊢ ( TEndo ‘ 𝑘 ) |
38 |
14 37
|
cfv |
⊢ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) |
39 |
21 38
|
wcel |
⊢ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) |
40 |
35 39
|
wa |
⊢ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) |
41 |
40 18 19
|
copab |
⊢ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) } |
42 |
7 17 41
|
cmpt |
⊢ ( 𝑞 ∈ { 𝑟 ∈ ( Atoms ‘ 𝑘 ) ∣ ¬ 𝑟 ( le ‘ 𝑘 ) 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) } ) |
43 |
3 6 42
|
cmpt |
⊢ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑞 ∈ { 𝑟 ∈ ( Atoms ‘ 𝑘 ) ∣ ¬ 𝑟 ( le ‘ 𝑘 ) 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) } ) ) |
44 |
1 2 43
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑞 ∈ { 𝑟 ∈ ( Atoms ‘ 𝑘 ) ∣ ¬ 𝑟 ( le ‘ 𝑘 ) 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) } ) ) ) |
45 |
0 44
|
wceq |
⊢ DIsoC = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑞 ∈ { 𝑟 ∈ ( Atoms ‘ 𝑘 ) ∣ ¬ 𝑟 ( le ‘ 𝑘 ) 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) } ) ) ) |