| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdic |
⊢ DIsoC |
| 1 |
|
vk |
⊢ 𝑘 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vw |
⊢ 𝑤 |
| 4 |
|
clh |
⊢ LHyp |
| 5 |
1
|
cv |
⊢ 𝑘 |
| 6 |
5 4
|
cfv |
⊢ ( LHyp ‘ 𝑘 ) |
| 7 |
|
vq |
⊢ 𝑞 |
| 8 |
|
vr |
⊢ 𝑟 |
| 9 |
|
catm |
⊢ Atoms |
| 10 |
5 9
|
cfv |
⊢ ( Atoms ‘ 𝑘 ) |
| 11 |
8
|
cv |
⊢ 𝑟 |
| 12 |
|
cple |
⊢ le |
| 13 |
5 12
|
cfv |
⊢ ( le ‘ 𝑘 ) |
| 14 |
3
|
cv |
⊢ 𝑤 |
| 15 |
11 14 13
|
wbr |
⊢ 𝑟 ( le ‘ 𝑘 ) 𝑤 |
| 16 |
15
|
wn |
⊢ ¬ 𝑟 ( le ‘ 𝑘 ) 𝑤 |
| 17 |
16 8 10
|
crab |
⊢ { 𝑟 ∈ ( Atoms ‘ 𝑘 ) ∣ ¬ 𝑟 ( le ‘ 𝑘 ) 𝑤 } |
| 18 |
|
vf |
⊢ 𝑓 |
| 19 |
|
vs |
⊢ 𝑠 |
| 20 |
18
|
cv |
⊢ 𝑓 |
| 21 |
19
|
cv |
⊢ 𝑠 |
| 22 |
|
vg |
⊢ 𝑔 |
| 23 |
|
cltrn |
⊢ LTrn |
| 24 |
5 23
|
cfv |
⊢ ( LTrn ‘ 𝑘 ) |
| 25 |
14 24
|
cfv |
⊢ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) |
| 26 |
22
|
cv |
⊢ 𝑔 |
| 27 |
|
coc |
⊢ oc |
| 28 |
5 27
|
cfv |
⊢ ( oc ‘ 𝑘 ) |
| 29 |
14 28
|
cfv |
⊢ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) |
| 30 |
29 26
|
cfv |
⊢ ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) |
| 31 |
7
|
cv |
⊢ 𝑞 |
| 32 |
30 31
|
wceq |
⊢ ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 |
| 33 |
32 22 25
|
crio |
⊢ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) |
| 34 |
33 21
|
cfv |
⊢ ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) |
| 35 |
20 34
|
wceq |
⊢ 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) |
| 36 |
|
ctendo |
⊢ TEndo |
| 37 |
5 36
|
cfv |
⊢ ( TEndo ‘ 𝑘 ) |
| 38 |
14 37
|
cfv |
⊢ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) |
| 39 |
21 38
|
wcel |
⊢ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) |
| 40 |
35 39
|
wa |
⊢ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) |
| 41 |
40 18 19
|
copab |
⊢ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) } |
| 42 |
7 17 41
|
cmpt |
⊢ ( 𝑞 ∈ { 𝑟 ∈ ( Atoms ‘ 𝑘 ) ∣ ¬ 𝑟 ( le ‘ 𝑘 ) 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) } ) |
| 43 |
3 6 42
|
cmpt |
⊢ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑞 ∈ { 𝑟 ∈ ( Atoms ‘ 𝑘 ) ∣ ¬ 𝑟 ( le ‘ 𝑘 ) 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) } ) ) |
| 44 |
1 2 43
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑞 ∈ { 𝑟 ∈ ( Atoms ‘ 𝑘 ) ∣ ¬ 𝑟 ( le ‘ 𝑘 ) 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) } ) ) ) |
| 45 |
0 44
|
wceq |
⊢ DIsoC = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑞 ∈ { 𝑟 ∈ ( Atoms ‘ 𝑘 ) ∣ ¬ 𝑟 ( le ‘ 𝑘 ) 𝑤 } ↦ { 〈 𝑓 , 𝑠 〉 ∣ ( 𝑓 = ( 𝑠 ‘ ( ℩ 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ( 𝑔 ‘ ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = 𝑞 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) } ) ) ) |