Step |
Hyp |
Ref |
Expression |
0 |
|
cdic |
|- DIsoC |
1 |
|
vk |
|- k |
2 |
|
cvv |
|- _V |
3 |
|
vw |
|- w |
4 |
|
clh |
|- LHyp |
5 |
1
|
cv |
|- k |
6 |
5 4
|
cfv |
|- ( LHyp ` k ) |
7 |
|
vq |
|- q |
8 |
|
vr |
|- r |
9 |
|
catm |
|- Atoms |
10 |
5 9
|
cfv |
|- ( Atoms ` k ) |
11 |
8
|
cv |
|- r |
12 |
|
cple |
|- le |
13 |
5 12
|
cfv |
|- ( le ` k ) |
14 |
3
|
cv |
|- w |
15 |
11 14 13
|
wbr |
|- r ( le ` k ) w |
16 |
15
|
wn |
|- -. r ( le ` k ) w |
17 |
16 8 10
|
crab |
|- { r e. ( Atoms ` k ) | -. r ( le ` k ) w } |
18 |
|
vf |
|- f |
19 |
|
vs |
|- s |
20 |
18
|
cv |
|- f |
21 |
19
|
cv |
|- s |
22 |
|
vg |
|- g |
23 |
|
cltrn |
|- LTrn |
24 |
5 23
|
cfv |
|- ( LTrn ` k ) |
25 |
14 24
|
cfv |
|- ( ( LTrn ` k ) ` w ) |
26 |
22
|
cv |
|- g |
27 |
|
coc |
|- oc |
28 |
5 27
|
cfv |
|- ( oc ` k ) |
29 |
14 28
|
cfv |
|- ( ( oc ` k ) ` w ) |
30 |
29 26
|
cfv |
|- ( g ` ( ( oc ` k ) ` w ) ) |
31 |
7
|
cv |
|- q |
32 |
30 31
|
wceq |
|- ( g ` ( ( oc ` k ) ` w ) ) = q |
33 |
32 22 25
|
crio |
|- ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) |
34 |
33 21
|
cfv |
|- ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) |
35 |
20 34
|
wceq |
|- f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) |
36 |
|
ctendo |
|- TEndo |
37 |
5 36
|
cfv |
|- ( TEndo ` k ) |
38 |
14 37
|
cfv |
|- ( ( TEndo ` k ) ` w ) |
39 |
21 38
|
wcel |
|- s e. ( ( TEndo ` k ) ` w ) |
40 |
35 39
|
wa |
|- ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` k ) ` w ) ) |
41 |
40 18 19
|
copab |
|- { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` k ) ` w ) ) } |
42 |
7 17 41
|
cmpt |
|- ( q e. { r e. ( Atoms ` k ) | -. r ( le ` k ) w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` k ) ` w ) ) } ) |
43 |
3 6 42
|
cmpt |
|- ( w e. ( LHyp ` k ) |-> ( q e. { r e. ( Atoms ` k ) | -. r ( le ` k ) w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` k ) ` w ) ) } ) ) |
44 |
1 2 43
|
cmpt |
|- ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( q e. { r e. ( Atoms ` k ) | -. r ( le ` k ) w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` k ) ` w ) ) } ) ) ) |
45 |
0 44
|
wceq |
|- DIsoC = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( q e. { r e. ( Atoms ` k ) | -. r ( le ` k ) w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` k ) ` w ) ) } ) ) ) |