| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dicval.l |
|- .<_ = ( le ` K ) |
| 2 |
|
dicval.a |
|- A = ( Atoms ` K ) |
| 3 |
|
dicval.h |
|- H = ( LHyp ` K ) |
| 4 |
|
elex |
|- ( K e. V -> K e. _V ) |
| 5 |
|
fveq2 |
|- ( k = K -> ( LHyp ` k ) = ( LHyp ` K ) ) |
| 6 |
5 3
|
eqtr4di |
|- ( k = K -> ( LHyp ` k ) = H ) |
| 7 |
|
fveq2 |
|- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
| 8 |
7 2
|
eqtr4di |
|- ( k = K -> ( Atoms ` k ) = A ) |
| 9 |
|
fveq2 |
|- ( k = K -> ( le ` k ) = ( le ` K ) ) |
| 10 |
9 1
|
eqtr4di |
|- ( k = K -> ( le ` k ) = .<_ ) |
| 11 |
10
|
breqd |
|- ( k = K -> ( r ( le ` k ) w <-> r .<_ w ) ) |
| 12 |
11
|
notbid |
|- ( k = K -> ( -. r ( le ` k ) w <-> -. r .<_ w ) ) |
| 13 |
8 12
|
rabeqbidv |
|- ( k = K -> { r e. ( Atoms ` k ) | -. r ( le ` k ) w } = { r e. A | -. r .<_ w } ) |
| 14 |
|
fveq2 |
|- ( k = K -> ( LTrn ` k ) = ( LTrn ` K ) ) |
| 15 |
14
|
fveq1d |
|- ( k = K -> ( ( LTrn ` k ) ` w ) = ( ( LTrn ` K ) ` w ) ) |
| 16 |
|
fveq2 |
|- ( k = K -> ( oc ` k ) = ( oc ` K ) ) |
| 17 |
16
|
fveq1d |
|- ( k = K -> ( ( oc ` k ) ` w ) = ( ( oc ` K ) ` w ) ) |
| 18 |
17
|
fveqeq2d |
|- ( k = K -> ( ( g ` ( ( oc ` k ) ` w ) ) = q <-> ( g ` ( ( oc ` K ) ` w ) ) = q ) ) |
| 19 |
15 18
|
riotaeqbidv |
|- ( k = K -> ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) = ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) |
| 20 |
19
|
fveq2d |
|- ( k = K -> ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) ) |
| 21 |
20
|
eqeq2d |
|- ( k = K -> ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) <-> f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) ) ) |
| 22 |
|
fveq2 |
|- ( k = K -> ( TEndo ` k ) = ( TEndo ` K ) ) |
| 23 |
22
|
fveq1d |
|- ( k = K -> ( ( TEndo ` k ) ` w ) = ( ( TEndo ` K ) ` w ) ) |
| 24 |
23
|
eleq2d |
|- ( k = K -> ( s e. ( ( TEndo ` k ) ` w ) <-> s e. ( ( TEndo ` K ) ` w ) ) ) |
| 25 |
21 24
|
anbi12d |
|- ( k = K -> ( ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` k ) ` w ) ) <-> ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) ) ) |
| 26 |
25
|
opabbidv |
|- ( k = K -> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` k ) ` w ) ) } = { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } ) |
| 27 |
13 26
|
mpteq12dv |
|- ( k = K -> ( q e. { r e. ( Atoms ` k ) | -. r ( le ` k ) w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` k ) ` w ) ) } ) = ( q e. { r e. A | -. r .<_ w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } ) ) |
| 28 |
6 27
|
mpteq12dv |
|- ( k = K -> ( w e. ( LHyp ` k ) |-> ( q e. { r e. ( Atoms ` k ) | -. r ( le ` k ) w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` k ) ` w ) ) } ) ) = ( w e. H |-> ( q e. { r e. A | -. r .<_ w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } ) ) ) |
| 29 |
|
df-dic |
|- DIsoC = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( q e. { r e. ( Atoms ` k ) | -. r ( le ` k ) w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` k ) ` w ) ) } ) ) ) |
| 30 |
28 29 3
|
mptfvmpt |
|- ( K e. _V -> ( DIsoC ` K ) = ( w e. H |-> ( q e. { r e. A | -. r .<_ w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } ) ) ) |
| 31 |
4 30
|
syl |
|- ( K e. V -> ( DIsoC ` K ) = ( w e. H |-> ( q e. { r e. A | -. r .<_ w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } ) ) ) |