| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dicval.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | dicval.a |  |-  A = ( Atoms ` K ) | 
						
							| 3 |  | dicval.h |  |-  H = ( LHyp ` K ) | 
						
							| 4 |  | elex |  |-  ( K e. V -> K e. _V ) | 
						
							| 5 |  | fveq2 |  |-  ( k = K -> ( LHyp ` k ) = ( LHyp ` K ) ) | 
						
							| 6 | 5 3 | eqtr4di |  |-  ( k = K -> ( LHyp ` k ) = H ) | 
						
							| 7 |  | fveq2 |  |-  ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) | 
						
							| 8 | 7 2 | eqtr4di |  |-  ( k = K -> ( Atoms ` k ) = A ) | 
						
							| 9 |  | fveq2 |  |-  ( k = K -> ( le ` k ) = ( le ` K ) ) | 
						
							| 10 | 9 1 | eqtr4di |  |-  ( k = K -> ( le ` k ) = .<_ ) | 
						
							| 11 | 10 | breqd |  |-  ( k = K -> ( r ( le ` k ) w <-> r .<_ w ) ) | 
						
							| 12 | 11 | notbid |  |-  ( k = K -> ( -. r ( le ` k ) w <-> -. r .<_ w ) ) | 
						
							| 13 | 8 12 | rabeqbidv |  |-  ( k = K -> { r e. ( Atoms ` k ) | -. r ( le ` k ) w } = { r e. A | -. r .<_ w } ) | 
						
							| 14 |  | fveq2 |  |-  ( k = K -> ( LTrn ` k ) = ( LTrn ` K ) ) | 
						
							| 15 | 14 | fveq1d |  |-  ( k = K -> ( ( LTrn ` k ) ` w ) = ( ( LTrn ` K ) ` w ) ) | 
						
							| 16 |  | fveq2 |  |-  ( k = K -> ( oc ` k ) = ( oc ` K ) ) | 
						
							| 17 | 16 | fveq1d |  |-  ( k = K -> ( ( oc ` k ) ` w ) = ( ( oc ` K ) ` w ) ) | 
						
							| 18 | 17 | fveqeq2d |  |-  ( k = K -> ( ( g ` ( ( oc ` k ) ` w ) ) = q <-> ( g ` ( ( oc ` K ) ` w ) ) = q ) ) | 
						
							| 19 | 15 18 | riotaeqbidv |  |-  ( k = K -> ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) = ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) | 
						
							| 20 | 19 | fveq2d |  |-  ( k = K -> ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) ) | 
						
							| 21 | 20 | eqeq2d |  |-  ( k = K -> ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) <-> f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) ) ) | 
						
							| 22 |  | fveq2 |  |-  ( k = K -> ( TEndo ` k ) = ( TEndo ` K ) ) | 
						
							| 23 | 22 | fveq1d |  |-  ( k = K -> ( ( TEndo ` k ) ` w ) = ( ( TEndo ` K ) ` w ) ) | 
						
							| 24 | 23 | eleq2d |  |-  ( k = K -> ( s e. ( ( TEndo ` k ) ` w ) <-> s e. ( ( TEndo ` K ) ` w ) ) ) | 
						
							| 25 | 21 24 | anbi12d |  |-  ( k = K -> ( ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` k ) ` w ) ) <-> ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) ) ) | 
						
							| 26 | 25 | opabbidv |  |-  ( k = K -> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` k ) ` w ) ) } = { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } ) | 
						
							| 27 | 13 26 | mpteq12dv |  |-  ( k = K -> ( q e. { r e. ( Atoms ` k ) | -. r ( le ` k ) w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` k ) ` w ) ) } ) = ( q e. { r e. A | -. r .<_ w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } ) ) | 
						
							| 28 | 6 27 | mpteq12dv |  |-  ( k = K -> ( w e. ( LHyp ` k ) |-> ( q e. { r e. ( Atoms ` k ) | -. r ( le ` k ) w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` k ) ` w ) ) } ) ) = ( w e. H |-> ( q e. { r e. A | -. r .<_ w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } ) ) ) | 
						
							| 29 |  | df-dic |  |-  DIsoC = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( q e. { r e. ( Atoms ` k ) | -. r ( le ` k ) w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` k ) ` w ) ( g ` ( ( oc ` k ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` k ) ` w ) ) } ) ) ) | 
						
							| 30 | 28 29 3 | mptfvmpt |  |-  ( K e. _V -> ( DIsoC ` K ) = ( w e. H |-> ( q e. { r e. A | -. r .<_ w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } ) ) ) | 
						
							| 31 | 4 30 | syl |  |-  ( K e. V -> ( DIsoC ` K ) = ( w e. H |-> ( q e. { r e. A | -. r .<_ w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } ) ) ) |