Metamath Proof Explorer


Theorem riotaeqbidv

Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011)

Ref Expression
Hypotheses riotaeqbidv.1
|- ( ph -> A = B )
riotaeqbidv.2
|- ( ph -> ( ps <-> ch ) )
Assertion riotaeqbidv
|- ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. B ch ) )

Proof

Step Hyp Ref Expression
1 riotaeqbidv.1
 |-  ( ph -> A = B )
2 riotaeqbidv.2
 |-  ( ph -> ( ps <-> ch ) )
3 2 riotabidv
 |-  ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. A ch ) )
4 1 riotaeqdv
 |-  ( ph -> ( iota_ x e. A ch ) = ( iota_ x e. B ch ) )
5 3 4 eqtrd
 |-  ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. B ch ) )