Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | riotaeqbidv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
riotaeqbidv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | riotaeqbidv | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = ( ℩ 𝑥 ∈ 𝐵 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaeqbidv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | riotaeqbidv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
3 | 2 | riotabidv | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = ( ℩ 𝑥 ∈ 𝐴 𝜒 ) ) |
4 | 1 | riotaeqdv | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜒 ) = ( ℩ 𝑥 ∈ 𝐵 𝜒 ) ) |
5 | 3 4 | eqtrd | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜓 ) = ( ℩ 𝑥 ∈ 𝐵 𝜒 ) ) |