Metamath Proof Explorer


Theorem riotaeqbidv

Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011)

Ref Expression
Hypotheses riotaeqbidv.1 ( 𝜑𝐴 = 𝐵 )
riotaeqbidv.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion riotaeqbidv ( 𝜑 → ( 𝑥𝐴 𝜓 ) = ( 𝑥𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 riotaeqbidv.1 ( 𝜑𝐴 = 𝐵 )
2 riotaeqbidv.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 2 riotabidv ( 𝜑 → ( 𝑥𝐴 𝜓 ) = ( 𝑥𝐴 𝜒 ) )
4 1 riotaeqdv ( 𝜑 → ( 𝑥𝐴 𝜒 ) = ( 𝑥𝐵 𝜒 ) )
5 3 4 eqtrd ( 𝜑 → ( 𝑥𝐴 𝜓 ) = ( 𝑥𝐵 𝜒 ) )