Step |
Hyp |
Ref |
Expression |
1 |
|
dicval.l |
|- .<_ = ( le ` K ) |
2 |
|
dicval.a |
|- A = ( Atoms ` K ) |
3 |
|
dicval.h |
|- H = ( LHyp ` K ) |
4 |
|
dicval.p |
|- P = ( ( oc ` K ) ` W ) |
5 |
|
dicval.t |
|- T = ( ( LTrn ` K ) ` W ) |
6 |
|
dicval.e |
|- E = ( ( TEndo ` K ) ` W ) |
7 |
|
dicval.i |
|- I = ( ( DIsoC ` K ) ` W ) |
8 |
1 2 3
|
dicffval |
|- ( K e. V -> ( DIsoC ` K ) = ( w e. H |-> ( q e. { r e. A | -. r .<_ w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } ) ) ) |
9 |
8
|
fveq1d |
|- ( K e. V -> ( ( DIsoC ` K ) ` W ) = ( ( w e. H |-> ( q e. { r e. A | -. r .<_ w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } ) ) ` W ) ) |
10 |
7 9
|
eqtrid |
|- ( K e. V -> I = ( ( w e. H |-> ( q e. { r e. A | -. r .<_ w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } ) ) ` W ) ) |
11 |
|
breq2 |
|- ( w = W -> ( r .<_ w <-> r .<_ W ) ) |
12 |
11
|
notbid |
|- ( w = W -> ( -. r .<_ w <-> -. r .<_ W ) ) |
13 |
12
|
rabbidv |
|- ( w = W -> { r e. A | -. r .<_ w } = { r e. A | -. r .<_ W } ) |
14 |
|
fveq2 |
|- ( w = W -> ( ( LTrn ` K ) ` w ) = ( ( LTrn ` K ) ` W ) ) |
15 |
14 5
|
eqtr4di |
|- ( w = W -> ( ( LTrn ` K ) ` w ) = T ) |
16 |
|
fveq2 |
|- ( w = W -> ( ( oc ` K ) ` w ) = ( ( oc ` K ) ` W ) ) |
17 |
16 4
|
eqtr4di |
|- ( w = W -> ( ( oc ` K ) ` w ) = P ) |
18 |
17
|
fveqeq2d |
|- ( w = W -> ( ( g ` ( ( oc ` K ) ` w ) ) = q <-> ( g ` P ) = q ) ) |
19 |
15 18
|
riotaeqbidv |
|- ( w = W -> ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) = ( iota_ g e. T ( g ` P ) = q ) ) |
20 |
19
|
fveq2d |
|- ( w = W -> ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) = ( s ` ( iota_ g e. T ( g ` P ) = q ) ) ) |
21 |
20
|
eqeq2d |
|- ( w = W -> ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) <-> f = ( s ` ( iota_ g e. T ( g ` P ) = q ) ) ) ) |
22 |
|
fveq2 |
|- ( w = W -> ( ( TEndo ` K ) ` w ) = ( ( TEndo ` K ) ` W ) ) |
23 |
22 6
|
eqtr4di |
|- ( w = W -> ( ( TEndo ` K ) ` w ) = E ) |
24 |
23
|
eleq2d |
|- ( w = W -> ( s e. ( ( TEndo ` K ) ` w ) <-> s e. E ) ) |
25 |
21 24
|
anbi12d |
|- ( w = W -> ( ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) <-> ( f = ( s ` ( iota_ g e. T ( g ` P ) = q ) ) /\ s e. E ) ) ) |
26 |
25
|
opabbidv |
|- ( w = W -> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } = { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = q ) ) /\ s e. E ) } ) |
27 |
13 26
|
mpteq12dv |
|- ( w = W -> ( q e. { r e. A | -. r .<_ w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } ) = ( q e. { r e. A | -. r .<_ W } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = q ) ) /\ s e. E ) } ) ) |
28 |
|
eqid |
|- ( w e. H |-> ( q e. { r e. A | -. r .<_ w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } ) ) = ( w e. H |-> ( q e. { r e. A | -. r .<_ w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } ) ) |
29 |
2
|
fvexi |
|- A e. _V |
30 |
29
|
mptrabex |
|- ( q e. { r e. A | -. r .<_ W } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = q ) ) /\ s e. E ) } ) e. _V |
31 |
27 28 30
|
fvmpt |
|- ( W e. H -> ( ( w e. H |-> ( q e. { r e. A | -. r .<_ w } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` w ) ( g ` ( ( oc ` K ) ` w ) ) = q ) ) /\ s e. ( ( TEndo ` K ) ` w ) ) } ) ) ` W ) = ( q e. { r e. A | -. r .<_ W } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = q ) ) /\ s e. E ) } ) ) |
32 |
10 31
|
sylan9eq |
|- ( ( K e. V /\ W e. H ) -> I = ( q e. { r e. A | -. r .<_ W } |-> { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = q ) ) /\ s e. E ) } ) ) |