Metamath Proof Explorer


Definition df-dic

Description: Isomorphism C has domain of lattice atoms that are not less than or equal to the fiducial co-atom w . The value is a one-dimensional subspace generated by the pair consisting of the iota_ vector below and the endomorphism ring unity. Definition of phi(q) in Crawley p. 121. Note that we use the fixed atom ( ( oc k ) w ) to represent the p in their "Choose an atom p..." on line 21. (Contributed by NM, 15-Dec-2013)

Ref Expression
Assertion df-dic DIsoC=kVwLHypkqrAtomsk|¬rkwfs|f=sιgLTrnkw|gockw=qsTEndokw

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdic classDIsoC
1 vk setvark
2 cvv classV
3 vw setvarw
4 clh classLHyp
5 1 cv setvark
6 5 4 cfv classLHypk
7 vq setvarq
8 vr setvarr
9 catm classAtoms
10 5 9 cfv classAtomsk
11 8 cv setvarr
12 cple classle
13 5 12 cfv classk
14 3 cv setvarw
15 11 14 13 wbr wffrkw
16 15 wn wff¬rkw
17 16 8 10 crab classrAtomsk|¬rkw
18 vf setvarf
19 vs setvars
20 18 cv setvarf
21 19 cv setvars
22 vg setvarg
23 cltrn classLTrn
24 5 23 cfv classLTrnk
25 14 24 cfv classLTrnkw
26 22 cv setvarg
27 coc classoc
28 5 27 cfv classock
29 14 28 cfv classockw
30 29 26 cfv classgockw
31 7 cv setvarq
32 30 31 wceq wffgockw=q
33 32 22 25 crio classιgLTrnkw|gockw=q
34 33 21 cfv classsιgLTrnkw|gockw=q
35 20 34 wceq wfff=sιgLTrnkw|gockw=q
36 ctendo classTEndo
37 5 36 cfv classTEndok
38 14 37 cfv classTEndokw
39 21 38 wcel wffsTEndokw
40 35 39 wa wfff=sιgLTrnkw|gockw=qsTEndokw
41 40 18 19 copab classfs|f=sιgLTrnkw|gockw=qsTEndokw
42 7 17 41 cmpt classqrAtomsk|¬rkwfs|f=sιgLTrnkw|gockw=qsTEndokw
43 3 6 42 cmpt classwLHypkqrAtomsk|¬rkwfs|f=sιgLTrnkw|gockw=qsTEndokw
44 1 2 43 cmpt classkVwLHypkqrAtomsk|¬rkwfs|f=sιgLTrnkw|gockw=qsTEndokw
45 0 44 wceq wffDIsoC=kVwLHypkqrAtomsk|¬rkwfs|f=sιgLTrnkw|gockw=qsTEndokw